本文整理汇总了Python中object_detection.builders.dataset_builder.build方法的典型用法代码示例。如果您正苦于以下问题:Python dataset_builder.build方法的具体用法?Python dataset_builder.build怎么用?Python dataset_builder.build使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类object_detection.builders.dataset_builder
的用法示例。
在下文中一共展示了dataset_builder.build方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_build_tf_record_input_reader_and_load_instance_masks
# 需要导入模块: from object_detection.builders import dataset_builder [as 别名]
# 或者: from object_detection.builders.dataset_builder import build [as 别名]
def test_build_tf_record_input_reader_and_load_instance_masks(self):
tf_record_path = self.create_tf_record()
input_reader_text_proto = """
shuffle: false
num_readers: 1
load_instance_masks: true
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
tensor_dict = dataset_builder.make_initializable_iterator(
dataset_builder.build(input_reader_proto, batch_size=1)).get_next()
with tf.train.MonitoredSession() as sess:
output_dict = sess.run(tensor_dict)
self.assertAllEqual(
(1, 1, 4, 5),
output_dict[fields.InputDataFields.groundtruth_instance_masks].shape)
示例2: test_sample_all_data
# 需要导入模块: from object_detection.builders import dataset_builder [as 别名]
# 或者: from object_detection.builders.dataset_builder import build [as 别名]
def test_sample_all_data(self):
tf_record_path = self.create_tf_record(num_examples=2)
input_reader_text_proto = """
shuffle: false
num_readers: 1
sample_1_of_n_examples: 1
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
tensor_dict = dataset_builder.make_initializable_iterator(
dataset_builder.build(input_reader_proto, batch_size=1)).get_next()
with tf.train.MonitoredSession() as sess:
output_dict = sess.run(tensor_dict)
self.assertAllEqual(['0'], output_dict[fields.InputDataFields.source_id])
output_dict = sess.run(tensor_dict)
self.assertEquals(['1'], output_dict[fields.InputDataFields.source_id])
示例3: test_sample_one_of_n_shards
# 需要导入模块: from object_detection.builders import dataset_builder [as 别名]
# 或者: from object_detection.builders.dataset_builder import build [as 别名]
def test_sample_one_of_n_shards(self):
tf_record_path = self.create_tf_record(num_examples=4)
input_reader_text_proto = """
shuffle: false
num_readers: 1
sample_1_of_n_examples: 2
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
tensor_dict = dataset_builder.make_initializable_iterator(
dataset_builder.build(input_reader_proto, batch_size=1)).get_next()
with tf.train.MonitoredSession() as sess:
output_dict = sess.run(tensor_dict)
self.assertAllEqual(['0'], output_dict[fields.InputDataFields.source_id])
output_dict = sess.run(tensor_dict)
self.assertEquals(['2'], output_dict[fields.InputDataFields.source_id])
示例4: test_build_tf_record_input_reader_and_load_instance_masks
# 需要导入模块: from object_detection.builders import dataset_builder [as 别名]
# 或者: from object_detection.builders.dataset_builder import build [as 别名]
def test_build_tf_record_input_reader_and_load_instance_masks(self):
tf_record_path = self.create_tf_record()
input_reader_text_proto = """
shuffle: false
num_readers: 1
load_instance_masks: true
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
tensor_dict = dataset_util.make_initializable_iterator(
dataset_builder.build(input_reader_proto, batch_size=1)).get_next()
sv = tf.train.Supervisor(logdir=self.get_temp_dir())
with sv.prepare_or_wait_for_session() as sess:
sv.start_queue_runners(sess)
output_dict = sess.run(tensor_dict)
self.assertAllEqual(
(1, 1, 4, 5),
output_dict[fields.InputDataFields.groundtruth_instance_masks].shape)
示例5: test_build_tf_record_input_reader_with_additional_channels
# 需要导入模块: from object_detection.builders import dataset_builder [as 别名]
# 或者: from object_detection.builders.dataset_builder import build [as 别名]
def test_build_tf_record_input_reader_with_additional_channels(self):
tf_record_path = self.create_tf_record(has_additional_channels=True)
input_reader_text_proto = """
shuffle: false
num_readers: 1
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
tensor_dict = dataset_util.make_initializable_iterator(
dataset_builder.build(
input_reader_proto, batch_size=2,
num_additional_channels=2)).get_next()
sv = tf.train.Supervisor(logdir=self.get_temp_dir())
with sv.prepare_or_wait_for_session() as sess:
sv.start_queue_runners(sess)
output_dict = sess.run(tensor_dict)
self.assertEquals((2, 4, 5, 5),
output_dict[fields.InputDataFields.image].shape)
示例6: evaluate
# 需要导入模块: from object_detection.builders import dataset_builder [as 别名]
# 或者: from object_detection.builders.dataset_builder import build [as 别名]
def evaluate(self, eval_pipeline_file, model_dir, eval_dir):
configs = self._get_configs_from_pipeline_file(eval_pipeline_file)
model_config = configs['model']
eval_config = configs['eval_config']
input_config = configs['eval_input_config']
model_fn = functools.partial(
model_builder.build,
model_config=model_config,
is_training=True)
create_input_dict_fn = functools.partial(self.get_next, input_config)
label_map = label_map_util.load_labelmap(input_config.label_map_path)
max_num_classes = max([item.id for item in label_map.item])
categories = label_map_util.convert_label_map_to_categories(
label_map, max_num_classes)
evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories,
model_dir, eval_dir)
示例7: test_build_tf_record_input_reader_and_load_instance_masks
# 需要导入模块: from object_detection.builders import dataset_builder [as 别名]
# 或者: from object_detection.builders.dataset_builder import build [as 别名]
def test_build_tf_record_input_reader_and_load_instance_masks(self):
tf_record_path = self.create_tf_record()
input_reader_text_proto = """
shuffle: false
num_readers: 1
load_instance_masks: true
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
tensor_dict = dataset_util.make_initializable_iterator(
dataset_builder.build(input_reader_proto)).get_next()
sv = tf.train.Supervisor(logdir=self.get_temp_dir())
with sv.prepare_or_wait_for_session() as sess:
sv.start_queue_runners(sess)
output_dict = sess.run(tensor_dict)
self.assertAllEqual(
(1, 4, 5),
output_dict[fields.InputDataFields.groundtruth_instance_masks].shape)
示例8: test_build_tf_record_input_reader_and_load_instance_masks
# 需要导入模块: from object_detection.builders import dataset_builder [as 别名]
# 或者: from object_detection.builders.dataset_builder import build [as 别名]
def test_build_tf_record_input_reader_and_load_instance_masks(self):
tf_record_path = self.create_tf_record()
input_reader_text_proto = """
shuffle: false
num_readers: 1
load_instance_masks: true
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
tensor_dict = dataset_builder.make_initializable_iterator(
dataset_builder.build(input_reader_proto, batch_size=1)).get_next()
sv = tf.train.Supervisor(logdir=self.get_temp_dir())
with sv.prepare_or_wait_for_session() as sess:
sv.start_queue_runners(sess)
output_dict = sess.run(tensor_dict)
self.assertAllEqual(
(1, 1, 4, 5),
output_dict[fields.InputDataFields.groundtruth_instance_masks].shape)
示例9: augment_input_data
# 需要导入模块: from object_detection.builders import dataset_builder [as 别名]
# 或者: from object_detection.builders.dataset_builder import build [as 别名]
def augment_input_data(tensor_dict, data_augmentation_options):
"""Applies data augmentation ops to input tensors.
Args:
tensor_dict: A dictionary of input tensors keyed by fields.InputDataFields.
data_augmentation_options: A list of tuples, where each tuple contains a
function and a dictionary that contains arguments and their values.
Usually, this is the output of core/preprocessor.build.
Returns:
A dictionary of tensors obtained by applying data augmentation ops to the
input tensor dictionary.
"""
tensor_dict[fields.InputDataFields.image] = tf.expand_dims(
tf.to_float(tensor_dict[fields.InputDataFields.image]), 0)
include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks
in tensor_dict)
include_keypoints = (fields.InputDataFields.groundtruth_keypoints
in tensor_dict)
tensor_dict = preprocessor.preprocess(
tensor_dict, data_augmentation_options,
func_arg_map=preprocessor.get_default_func_arg_map(
include_instance_masks=include_instance_masks,
include_keypoints=include_keypoints))
tensor_dict[fields.InputDataFields.image] = tf.squeeze(
tensor_dict[fields.InputDataFields.image], axis=0)
return tensor_dict
示例10: test_build_tf_record_input_reader
# 需要导入模块: from object_detection.builders import dataset_builder [as 别名]
# 或者: from object_detection.builders.dataset_builder import build [as 别名]
def test_build_tf_record_input_reader(self):
tf_record_path = self.create_tf_record()
input_reader_text_proto = """
shuffle: false
num_readers: 1
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
tensor_dict = dataset_builder.make_initializable_iterator(
dataset_builder.build(input_reader_proto, batch_size=1)).get_next()
with tf.train.MonitoredSession() as sess:
output_dict = sess.run(tensor_dict)
self.assertTrue(
fields.InputDataFields.groundtruth_instance_masks not in output_dict)
self.assertEquals((1, 4, 5, 3),
output_dict[fields.InputDataFields.image].shape)
self.assertAllEqual([[2]],
output_dict[fields.InputDataFields.groundtruth_classes])
self.assertEquals(
(1, 1, 4), output_dict[fields.InputDataFields.groundtruth_boxes].shape)
self.assertAllEqual(
[0.0, 0.0, 1.0, 1.0],
output_dict[fields.InputDataFields.groundtruth_boxes][0][0])
示例11: test_build_tf_record_input_reader_with_batch_size_two_and_masks
# 需要导入模块: from object_detection.builders import dataset_builder [as 别名]
# 或者: from object_detection.builders.dataset_builder import build [as 别名]
def test_build_tf_record_input_reader_with_batch_size_two_and_masks(self):
tf_record_path = self.create_tf_record()
input_reader_text_proto = """
shuffle: false
num_readers: 1
load_instance_masks: true
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
def one_hot_class_encoding_fn(tensor_dict):
tensor_dict[fields.InputDataFields.groundtruth_classes] = tf.one_hot(
tensor_dict[fields.InputDataFields.groundtruth_classes] - 1, depth=3)
return tensor_dict
tensor_dict = dataset_builder.make_initializable_iterator(
dataset_builder.build(
input_reader_proto,
transform_input_data_fn=one_hot_class_encoding_fn,
batch_size=2)).get_next()
with tf.train.MonitoredSession() as sess:
output_dict = sess.run(tensor_dict)
self.assertAllEqual(
[2, 1, 4, 5],
output_dict[fields.InputDataFields.groundtruth_instance_masks].shape)
示例12: test_raises_error_with_no_input_paths
# 需要导入模块: from object_detection.builders import dataset_builder [as 别名]
# 或者: from object_detection.builders.dataset_builder import build [as 别名]
def test_raises_error_with_no_input_paths(self):
input_reader_text_proto = """
shuffle: false
num_readers: 1
load_instance_masks: true
"""
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
with self.assertRaises(ValueError):
dataset_builder.build(input_reader_proto, batch_size=1)
示例13: test_build_tf_record_input_reader
# 需要导入模块: from object_detection.builders import dataset_builder [as 别名]
# 或者: from object_detection.builders.dataset_builder import build [as 别名]
def test_build_tf_record_input_reader(self):
tf_record_path = self.create_tf_record()
input_reader_text_proto = """
shuffle: false
num_readers: 1
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
tensor_dict = dataset_util.make_initializable_iterator(
dataset_builder.build(input_reader_proto, batch_size=1)).get_next()
sv = tf.train.Supervisor(logdir=self.get_temp_dir())
with sv.prepare_or_wait_for_session() as sess:
sv.start_queue_runners(sess)
output_dict = sess.run(tensor_dict)
self.assertTrue(
fields.InputDataFields.groundtruth_instance_masks not in output_dict)
self.assertEquals((1, 4, 5, 3),
output_dict[fields.InputDataFields.image].shape)
self.assertAllEqual([[2]],
output_dict[fields.InputDataFields.groundtruth_classes])
self.assertEquals(
(1, 1, 4), output_dict[fields.InputDataFields.groundtruth_boxes].shape)
self.assertAllEqual(
[0.0, 0.0, 1.0, 1.0],
output_dict[fields.InputDataFields.groundtruth_boxes][0][0])
示例14: test_build_tf_record_input_reader_with_batch_size_two_and_masks
# 需要导入模块: from object_detection.builders import dataset_builder [as 别名]
# 或者: from object_detection.builders.dataset_builder import build [as 别名]
def test_build_tf_record_input_reader_with_batch_size_two_and_masks(self):
tf_record_path = self.create_tf_record()
input_reader_text_proto = """
shuffle: false
num_readers: 1
load_instance_masks: true
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
def one_hot_class_encoding_fn(tensor_dict):
tensor_dict[fields.InputDataFields.groundtruth_classes] = tf.one_hot(
tensor_dict[fields.InputDataFields.groundtruth_classes] - 1, depth=3)
return tensor_dict
tensor_dict = dataset_util.make_initializable_iterator(
dataset_builder.build(
input_reader_proto,
transform_input_data_fn=one_hot_class_encoding_fn,
batch_size=2,
max_num_boxes=2,
num_classes=3,
spatial_image_shape=[4, 5])).get_next()
sv = tf.train.Supervisor(logdir=self.get_temp_dir())
with sv.prepare_or_wait_for_session() as sess:
sv.start_queue_runners(sess)
output_dict = sess.run(tensor_dict)
self.assertAllEqual(
[2, 2, 4, 5],
output_dict[fields.InputDataFields.groundtruth_instance_masks].shape)
示例15: test_raises_error_with_no_input_paths
# 需要导入模块: from object_detection.builders import dataset_builder [as 别名]
# 或者: from object_detection.builders.dataset_builder import build [as 别名]
def test_raises_error_with_no_input_paths(self):
input_reader_text_proto = """
shuffle: false
num_readers: 1
load_instance_masks: true
"""
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
with self.assertRaises(ValueError):
dataset_builder.build(input_reader_proto)