本文整理汇总了Python中object_detection.builders.box_predictor_builder.build_convolutional_keras_box_predictor方法的典型用法代码示例。如果您正苦于以下问题:Python box_predictor_builder.build_convolutional_keras_box_predictor方法的具体用法?Python box_predictor_builder.build_convolutional_keras_box_predictor怎么用?Python box_predictor_builder.build_convolutional_keras_box_predictor使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类object_detection.builders.box_predictor_builder
的用法示例。
在下文中一共展示了box_predictor_builder.build_convolutional_keras_box_predictor方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_get_boxes_for_five_aspect_ratios_per_location
# 需要导入模块: from object_detection.builders import box_predictor_builder [as 别名]
# 或者: from object_detection.builders.box_predictor_builder import build_convolutional_keras_box_predictor [as 别名]
def test_get_boxes_for_five_aspect_ratios_per_location(self):
def graph_fn(image_features):
conv_box_predictor = (
box_predictor_builder.build_convolutional_keras_box_predictor(
is_training=False,
num_classes=0,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5],
min_depth=0,
max_depth=32,
num_layers_before_predictor=1,
use_dropout=True,
dropout_keep_prob=0.8,
kernel_size=1,
box_code_size=4
))
box_predictions = conv_box_predictor([image_features])
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
objectness_predictions = tf.concat(
box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND],
axis=1)
return (box_encodings, objectness_predictions)
image_features = np.random.rand(4, 8, 8, 64).astype(np.float32)
(box_encodings, objectness_predictions) = self.execute(graph_fn,
[image_features])
self.assertAllEqual(box_encodings.shape, [4, 320, 1, 4])
self.assertAllEqual(objectness_predictions.shape, [4, 320, 1])
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:32,代码来源:convolutional_keras_box_predictor_test.py
示例2: test_get_boxes_for_one_aspect_ratio_per_location
# 需要导入模块: from object_detection.builders import box_predictor_builder [as 别名]
# 或者: from object_detection.builders.box_predictor_builder import build_convolutional_keras_box_predictor [as 别名]
def test_get_boxes_for_one_aspect_ratio_per_location(self):
def graph_fn(image_features):
conv_box_predictor = (
box_predictor_builder.build_convolutional_keras_box_predictor(
is_training=False,
num_classes=0,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[1],
min_depth=0,
max_depth=32,
num_layers_before_predictor=1,
use_dropout=True,
dropout_keep_prob=0.8,
kernel_size=1,
box_code_size=4
))
box_predictions = conv_box_predictor([image_features])
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
objectness_predictions = tf.concat(box_predictions[
box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1)
return (box_encodings, objectness_predictions)
image_features = np.random.rand(4, 8, 8, 64).astype(np.float32)
(box_encodings, objectness_predictions) = self.execute(graph_fn,
[image_features])
self.assertAllEqual(box_encodings.shape, [4, 64, 1, 4])
self.assertAllEqual(objectness_predictions.shape, [4, 64, 1])
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:31,代码来源:convolutional_keras_box_predictor_test.py
示例3: test_get_multi_class_predictions_for_five_aspect_ratios_per_location
# 需要导入模块: from object_detection.builders import box_predictor_builder [as 别名]
# 或者: from object_detection.builders.box_predictor_builder import build_convolutional_keras_box_predictor [as 别名]
def test_get_multi_class_predictions_for_five_aspect_ratios_per_location(
self):
num_classes_without_background = 6
image_features = np.random.rand(4, 8, 8, 64).astype(np.float32)
def graph_fn(image_features):
conv_box_predictor = (
box_predictor_builder.build_convolutional_keras_box_predictor(
is_training=False,
num_classes=num_classes_without_background,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5],
min_depth=0,
max_depth=32,
num_layers_before_predictor=1,
use_dropout=True,
dropout_keep_prob=0.8,
kernel_size=1,
box_code_size=4
))
box_predictions = conv_box_predictor([image_features])
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
class_predictions_with_background = tf.concat(
box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND],
axis=1)
return (box_encodings, class_predictions_with_background)
(box_encodings,
class_predictions_with_background) = self.execute(graph_fn,
[image_features])
self.assertAllEqual(box_encodings.shape, [4, 320, 1, 4])
self.assertAllEqual(class_predictions_with_background.shape,
[4, 320, num_classes_without_background+1])
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:36,代码来源:convolutional_keras_box_predictor_test.py
示例4: test_get_boxes_for_five_aspect_ratios_per_location
# 需要导入模块: from object_detection.builders import box_predictor_builder [as 别名]
# 或者: from object_detection.builders.box_predictor_builder import build_convolutional_keras_box_predictor [as 别名]
def test_get_boxes_for_five_aspect_ratios_per_location(self):
conv_box_predictor = (
box_predictor_builder.build_convolutional_keras_box_predictor(
is_training=False,
num_classes=0,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5],
min_depth=0,
max_depth=32,
num_layers_before_predictor=1,
use_dropout=True,
dropout_keep_prob=0.8,
kernel_size=1,
box_code_size=4
))
def graph_fn(image_features):
box_predictions = conv_box_predictor([image_features])
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
objectness_predictions = tf.concat(
box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND],
axis=1)
return (box_encodings, objectness_predictions)
image_features = np.random.rand(4, 8, 8, 64).astype(np.float32)
(box_encodings, objectness_predictions) = self.execute(graph_fn,
[image_features])
self.assertAllEqual(box_encodings.shape, [4, 320, 1, 4])
self.assertAllEqual(objectness_predictions.shape, [4, 320, 1])
示例5: test_get_boxes_for_one_aspect_ratio_per_location
# 需要导入模块: from object_detection.builders import box_predictor_builder [as 别名]
# 或者: from object_detection.builders.box_predictor_builder import build_convolutional_keras_box_predictor [as 别名]
def test_get_boxes_for_one_aspect_ratio_per_location(self):
conv_box_predictor = (
box_predictor_builder.build_convolutional_keras_box_predictor(
is_training=False,
num_classes=0,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[1],
min_depth=0,
max_depth=32,
num_layers_before_predictor=1,
use_dropout=True,
dropout_keep_prob=0.8,
kernel_size=1,
box_code_size=4
))
def graph_fn(image_features):
box_predictions = conv_box_predictor([image_features])
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
objectness_predictions = tf.concat(box_predictions[
box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1)
return (box_encodings, objectness_predictions)
image_features = np.random.rand(4, 8, 8, 64).astype(np.float32)
(box_encodings, objectness_predictions) = self.execute(graph_fn,
[image_features])
self.assertAllEqual(box_encodings.shape, [4, 64, 1, 4])
self.assertAllEqual(objectness_predictions.shape, [4, 64, 1])
示例6: test_get_multi_class_predictions_for_five_aspect_ratios_per_location
# 需要导入模块: from object_detection.builders import box_predictor_builder [as 别名]
# 或者: from object_detection.builders.box_predictor_builder import build_convolutional_keras_box_predictor [as 别名]
def test_get_multi_class_predictions_for_five_aspect_ratios_per_location(
self):
num_classes_without_background = 6
image_features = np.random.rand(4, 8, 8, 64).astype(np.float32)
conv_box_predictor = (
box_predictor_builder.build_convolutional_keras_box_predictor(
is_training=False,
num_classes=num_classes_without_background,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5],
min_depth=0,
max_depth=32,
num_layers_before_predictor=1,
use_dropout=True,
dropout_keep_prob=0.8,
kernel_size=1,
box_code_size=4
))
def graph_fn(image_features):
box_predictions = conv_box_predictor([image_features])
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
class_predictions_with_background = tf.concat(
box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND],
axis=1)
return (box_encodings, class_predictions_with_background)
(box_encodings,
class_predictions_with_background) = self.execute(graph_fn,
[image_features])
self.assertAllEqual(box_encodings.shape, [4, 320, 1, 4])
self.assertAllEqual(class_predictions_with_background.shape,
[4, 320, num_classes_without_background+1])
示例7: test_get_predictions_with_feature_maps_of_dynamic_shape
# 需要导入模块: from object_detection.builders import box_predictor_builder [as 别名]
# 或者: from object_detection.builders.box_predictor_builder import build_convolutional_keras_box_predictor [as 别名]
def test_get_predictions_with_feature_maps_of_dynamic_shape(
self):
image_features = tf.placeholder(dtype=tf.float32, shape=[4, None, None, 64])
conv_box_predictor = (
box_predictor_builder.build_convolutional_keras_box_predictor(
is_training=False,
num_classes=0,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5],
min_depth=0,
max_depth=32,
num_layers_before_predictor=1,
use_dropout=True,
dropout_keep_prob=0.8,
kernel_size=1,
box_code_size=4
))
box_predictions = conv_box_predictor([image_features])
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
objectness_predictions = tf.concat(
box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND],
axis=1)
init_op = tf.global_variables_initializer()
resolution = 32
expected_num_anchors = resolution*resolution*5
with self.test_session() as sess:
sess.run(init_op)
(box_encodings_shape,
objectness_predictions_shape) = sess.run(
[tf.shape(box_encodings), tf.shape(objectness_predictions)],
feed_dict={image_features:
np.random.rand(4, resolution, resolution, 64)})
actual_variable_set = set(
[var.op.name for var in tf.trainable_variables()])
self.assertAllEqual(box_encodings_shape, [4, expected_num_anchors, 1, 4])
self.assertAllEqual(objectness_predictions_shape,
[4, expected_num_anchors, 1])
expected_variable_set = set([
'BoxPredictor/SharedConvolutions_0/Conv2d_0_1x1_32/bias',
'BoxPredictor/SharedConvolutions_0/Conv2d_0_1x1_32/kernel',
'BoxPredictor/ConvolutionalBoxHead_0/BoxEncodingPredictor/bias',
'BoxPredictor/ConvolutionalBoxHead_0/BoxEncodingPredictor/kernel',
'BoxPredictor/ConvolutionalClassHead_0/ClassPredictor/bias',
'BoxPredictor/ConvolutionalClassHead_0/ClassPredictor/kernel'])
self.assertEqual(expected_variable_set, actual_variable_set)
# TODO(kaftan): Remove conditional after CMLE moves to TF 1.10
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:53,代码来源:convolutional_keras_box_predictor_test.py
示例8: test_get_predictions_with_feature_maps_of_dynamic_shape
# 需要导入模块: from object_detection.builders import box_predictor_builder [as 别名]
# 或者: from object_detection.builders.box_predictor_builder import build_convolutional_keras_box_predictor [as 别名]
def test_get_predictions_with_feature_maps_of_dynamic_shape(
self):
image_features = tf.placeholder(dtype=tf.float32, shape=[4, None, None, 64])
conv_box_predictor = (
box_predictor_builder.build_convolutional_keras_box_predictor(
is_training=False,
num_classes=0,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5],
min_depth=0,
max_depth=32,
num_layers_before_predictor=1,
use_dropout=True,
dropout_keep_prob=0.8,
kernel_size=1,
box_code_size=4
))
box_predictions = conv_box_predictor([image_features])
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
objectness_predictions = tf.concat(
box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND],
axis=1)
init_op = tf.global_variables_initializer()
resolution = 32
expected_num_anchors = resolution*resolution*5
with self.test_session() as sess:
sess.run(init_op)
(box_encodings_shape,
objectness_predictions_shape) = sess.run(
[tf.shape(box_encodings), tf.shape(objectness_predictions)],
feed_dict={image_features:
np.random.rand(4, resolution, resolution, 64)})
actual_variable_set = set(
[var.op.name for var in tf.trainable_variables()])
self.assertAllEqual(box_encodings_shape, [4, expected_num_anchors, 1, 4])
self.assertAllEqual(objectness_predictions_shape,
[4, expected_num_anchors, 1])
expected_variable_set = set([
'BoxPredictor/SharedConvolutions_0/Conv2d_0_1x1_32/bias',
'BoxPredictor/SharedConvolutions_0/Conv2d_0_1x1_32/kernel',
'BoxPredictor/ConvolutionalBoxHead_0/BoxEncodingPredictor/bias',
'BoxPredictor/ConvolutionalBoxHead_0/BoxEncodingPredictor/kernel',
'BoxPredictor/ConvolutionalClassHead_0/ClassPredictor/bias',
'BoxPredictor/ConvolutionalClassHead_0/ClassPredictor/kernel'])
self.assertEqual(expected_variable_set, actual_variable_set)
self.assertEqual(conv_box_predictor._sorted_head_names,
['box_encodings', 'class_predictions_with_background'])
# TODO(kaftan): Remove conditional after CMLE moves to TF 1.10
示例9: test_get_predictions_with_feature_maps_of_dynamic_shape
# 需要导入模块: from object_detection.builders import box_predictor_builder [as 别名]
# 或者: from object_detection.builders.box_predictor_builder import build_convolutional_keras_box_predictor [as 别名]
def test_get_predictions_with_feature_maps_of_dynamic_shape(
self):
tf.keras.backend.clear_session()
conv_box_predictor = (
box_predictor_builder.build_convolutional_keras_box_predictor(
is_training=False,
num_classes=0,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5],
min_depth=0,
max_depth=32,
num_layers_before_predictor=1,
use_dropout=True,
dropout_keep_prob=0.8,
kernel_size=1,
box_code_size=4
))
variables = []
def graph_fn(image_features):
box_predictions = conv_box_predictor([image_features])
variables.extend(list(conv_box_predictor.variables))
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
objectness_predictions = tf.concat(
box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND],
axis=1)
return box_encodings, objectness_predictions
resolution = 32
expected_num_anchors = resolution*resolution*5
box_encodings, objectness_predictions = self.execute(
graph_fn, [np.random.rand(4, resolution, resolution, 64)])
actual_variable_set = set([var.name.split(':')[0] for var in variables])
self.assertAllEqual(box_encodings.shape, [4, expected_num_anchors, 1, 4])
self.assertAllEqual(objectness_predictions.shape,
[4, expected_num_anchors, 1])
expected_variable_set = set([
'BoxPredictor/SharedConvolutions_0/Conv2d_0_1x1_32/bias',
'BoxPredictor/SharedConvolutions_0/Conv2d_0_1x1_32/kernel',
'BoxPredictor/ConvolutionalBoxHead_0/BoxEncodingPredictor/bias',
'BoxPredictor/ConvolutionalBoxHead_0/BoxEncodingPredictor/kernel',
'BoxPredictor/ConvolutionalClassHead_0/ClassPredictor/bias',
'BoxPredictor/ConvolutionalClassHead_0/ClassPredictor/kernel'])
self.assertEqual(expected_variable_set, actual_variable_set)
self.assertEqual(conv_box_predictor._sorted_head_names,
['box_encodings', 'class_predictions_with_background'])
示例10: test_use_depthwise_convolution
# 需要导入模块: from object_detection.builders import box_predictor_builder [as 别名]
# 或者: from object_detection.builders.box_predictor_builder import build_convolutional_keras_box_predictor [as 别名]
def test_use_depthwise_convolution(self):
tf.keras.backend.clear_session()
conv_box_predictor = (
box_predictor_builder.build_convolutional_keras_box_predictor(
is_training=False,
num_classes=0,
conv_hyperparams=self._build_conv_hyperparams(),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[5],
min_depth=0,
max_depth=32,
num_layers_before_predictor=1,
use_dropout=True,
dropout_keep_prob=0.8,
kernel_size=3,
box_code_size=4,
use_depthwise=True
))
variables = []
def graph_fn(image_features):
box_predictions = conv_box_predictor([image_features])
variables.extend(list(conv_box_predictor.variables))
box_encodings = tf.concat(
box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
objectness_predictions = tf.concat(
box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND],
axis=1)
return box_encodings, objectness_predictions
resolution = 32
expected_num_anchors = resolution*resolution*5
box_encodings, objectness_predictions = self.execute(
graph_fn, [np.random.rand(4, resolution, resolution, 64)])
actual_variable_set = set([var.name.split(':')[0] for var in variables])
self.assertAllEqual(box_encodings.shape, [4, expected_num_anchors, 1, 4])
self.assertAllEqual(objectness_predictions.shape,
[4, expected_num_anchors, 1])
expected_variable_set = set([
'BoxPredictor/SharedConvolutions_0/Conv2d_0_1x1_32/bias',
'BoxPredictor/SharedConvolutions_0/Conv2d_0_1x1_32/kernel',
'BoxPredictor/ConvolutionalBoxHead_0/BoxEncodingPredictor_depthwise/'
'bias',
'BoxPredictor/ConvolutionalBoxHead_0/BoxEncodingPredictor_depthwise/'
'depthwise_kernel',
'BoxPredictor/ConvolutionalBoxHead_0/BoxEncodingPredictor/bias',
'BoxPredictor/ConvolutionalBoxHead_0/BoxEncodingPredictor/kernel',
'BoxPredictor/ConvolutionalClassHead_0/ClassPredictor_depthwise/bias',
'BoxPredictor/ConvolutionalClassHead_0/ClassPredictor_depthwise/'
'depthwise_kernel',
'BoxPredictor/ConvolutionalClassHead_0/ClassPredictor/bias',
'BoxPredictor/ConvolutionalClassHead_0/ClassPredictor/kernel'])
self.assertEqual(expected_variable_set, actual_variable_set)
self.assertEqual(conv_box_predictor._sorted_head_names,
['box_encodings', 'class_predictions_with_background'])