本文整理汇总了Python中object_detection.builders.anchor_generator_builder.build方法的典型用法代码示例。如果您正苦于以下问题:Python anchor_generator_builder.build方法的具体用法?Python anchor_generator_builder.build怎么用?Python anchor_generator_builder.build使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类object_detection.builders.anchor_generator_builder
的用法示例。
在下文中一共展示了anchor_generator_builder.build方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: build
# 需要导入模块: from object_detection.builders import anchor_generator_builder [as 别名]
# 或者: from object_detection.builders.anchor_generator_builder import build [as 别名]
def build(model_config, is_training):
"""Builds a DetectionModel based on the model config.
Args:
model_config: A model.proto object containing the config for the desired
DetectionModel.
is_training: True if this model is being built for training purposes.
Returns:
DetectionModel based on the config.
Raises:
ValueError: On invalid meta architecture or model.
"""
if not isinstance(model_config, model_pb2.DetectionModel):
raise ValueError('model_config not of type model_pb2.DetectionModel.')
meta_architecture = model_config.WhichOneof('model')
if meta_architecture == 'ssd':
return _build_ssd_model(model_config.ssd, is_training)
if meta_architecture == 'faster_rcnn':
return _build_faster_rcnn_model(model_config.faster_rcnn, is_training)
raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
示例2: test_build_grid_anchor_generator_with_defaults
# 需要导入模块: from object_detection.builders import anchor_generator_builder [as 别名]
# 或者: from object_detection.builders.anchor_generator_builder import build [as 别名]
def test_build_grid_anchor_generator_with_defaults(self):
anchor_generator_text_proto = """
grid_anchor_generator {
}
"""
anchor_generator_proto = anchor_generator_pb2.AnchorGenerator()
text_format.Merge(anchor_generator_text_proto, anchor_generator_proto)
anchor_generator_object = anchor_generator_builder.build(
anchor_generator_proto)
self.assertTrue(isinstance(anchor_generator_object,
grid_anchor_generator.GridAnchorGenerator))
self.assertListEqual(anchor_generator_object._scales, [])
self.assertListEqual(anchor_generator_object._aspect_ratios, [])
with self.test_session() as sess:
base_anchor_size, anchor_offset, anchor_stride = sess.run(
[anchor_generator_object._base_anchor_size,
anchor_generator_object._anchor_offset,
anchor_generator_object._anchor_stride])
self.assertAllEqual(anchor_offset, [0, 0])
self.assertAllEqual(anchor_stride, [16, 16])
self.assertAllEqual(base_anchor_size, [256, 256])
示例3: build
# 需要导入模块: from object_detection.builders import anchor_generator_builder [as 别名]
# 或者: from object_detection.builders.anchor_generator_builder import build [as 别名]
def build(model_config, is_training, add_summaries=True):
"""Builds a DetectionModel based on the model config.
Args:
model_config: A model.proto object containing the config for the desired
DetectionModel.
is_training: True if this model is being built for training purposes.
add_summaries: Whether to add tensorflow summaries in the model graph.
Returns:
DetectionModel based on the config.
Raises:
ValueError: On invalid meta architecture or model.
"""
if not isinstance(model_config, model_pb2.DetectionModel):
raise ValueError('model_config not of type model_pb2.DetectionModel.')
meta_architecture = model_config.WhichOneof('model')
if meta_architecture == 'ssd':
return _build_ssd_model(model_config.ssd, is_training, add_summaries)
if meta_architecture == 'faster_rcnn':
return _build_faster_rcnn_model(model_config.faster_rcnn, is_training,
add_summaries)
raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
示例4: test_build_ssd_anchor_generator_with_custom_scales
# 需要导入模块: from object_detection.builders import anchor_generator_builder [as 别名]
# 或者: from object_detection.builders.anchor_generator_builder import build [as 别名]
def test_build_ssd_anchor_generator_with_custom_scales(self):
anchor_generator_text_proto = """
ssd_anchor_generator {
aspect_ratios: [1.0]
scales: [0.1, 0.15, 0.2, 0.4, 0.6, 0.8]
reduce_boxes_in_lowest_layer: false
}
"""
anchor_generator_proto = anchor_generator_pb2.AnchorGenerator()
text_format.Merge(anchor_generator_text_proto, anchor_generator_proto)
anchor_generator_object = anchor_generator_builder.build(
anchor_generator_proto)
self.assertTrue(isinstance(anchor_generator_object,
multiple_grid_anchor_generator.
MultipleGridAnchorGenerator))
for actual_scales, expected_scales in zip(
list(anchor_generator_object._scales),
[(0.1, math.sqrt(0.1 * 0.15)),
(0.15, math.sqrt(0.15 * 0.2)),
(0.2, math.sqrt(0.2 * 0.4)),
(0.4, math.sqrt(0.4 * 0.6)),
(0.6, math.sqrt(0.6 * 0.8)),
(0.8, math.sqrt(0.8 * 1.0))]):
self.assert_almost_list_equal(expected_scales, actual_scales, delta=1e-2)
示例5: test_build_multiscale_anchor_generator_custom_aspect_ratios
# 需要导入模块: from object_detection.builders import anchor_generator_builder [as 别名]
# 或者: from object_detection.builders.anchor_generator_builder import build [as 别名]
def test_build_multiscale_anchor_generator_custom_aspect_ratios(self):
anchor_generator_text_proto = """
multiscale_anchor_generator {
aspect_ratios: [1.0]
}
"""
anchor_generator_proto = anchor_generator_pb2.AnchorGenerator()
text_format.Merge(anchor_generator_text_proto, anchor_generator_proto)
anchor_generator_object = anchor_generator_builder.build(
anchor_generator_proto)
self.assertTrue(isinstance(anchor_generator_object,
multiscale_grid_anchor_generator.
MultiscaleGridAnchorGenerator))
for level, anchor_grid_info in zip(
range(3, 8), anchor_generator_object._anchor_grid_info):
self.assertEqual(set(anchor_grid_info.keys()), set(['level', 'info']))
self.assertTrue(level, anchor_grid_info['level'])
self.assertEqual(len(anchor_grid_info['info']), 4)
self.assertAllClose(anchor_grid_info['info'][0], [2**0, 2**0.5])
self.assertTrue(anchor_grid_info['info'][1], 1.0)
self.assertAllClose(anchor_grid_info['info'][2],
[4.0 * 2**level, 4.0 * 2**level])
self.assertAllClose(anchor_grid_info['info'][3], [2**level, 2**level])
self.assertTrue(anchor_generator_object._normalize_coordinates)
示例6: test_build_multiscale_anchor_generator_with_anchors_in_pixel_coordinates
# 需要导入模块: from object_detection.builders import anchor_generator_builder [as 别名]
# 或者: from object_detection.builders.anchor_generator_builder import build [as 别名]
def test_build_multiscale_anchor_generator_with_anchors_in_pixel_coordinates(
self):
anchor_generator_text_proto = """
multiscale_anchor_generator {
aspect_ratios: [1.0]
normalize_coordinates: false
}
"""
anchor_generator_proto = anchor_generator_pb2.AnchorGenerator()
text_format.Merge(anchor_generator_text_proto, anchor_generator_proto)
anchor_generator_object = anchor_generator_builder.build(
anchor_generator_proto)
self.assertTrue(isinstance(anchor_generator_object,
multiscale_grid_anchor_generator.
MultiscaleGridAnchorGenerator))
self.assertFalse(anchor_generator_object._normalize_coordinates)
示例7: build
# 需要导入模块: from object_detection.builders import anchor_generator_builder [as 别名]
# 或者: from object_detection.builders.anchor_generator_builder import build [as 别名]
def build(model_config, is_training, add_summaries=True):
"""Builds a DetectionModel based on the model config.
Args:
model_config: A model.proto object containing the config for the desired
DetectionModel.
is_training: True if this model is being built for training purposes.
add_summaries: Whether to add tensorflow summaries in the model graph.
Returns:
DetectionModel based on the config.
Raises:
ValueError: On invalid meta architecture or model.
"""
if not isinstance(model_config, model_pb2.DetectionModel):
raise ValueError('model_config not of type model_pb2.DetectionModel.')
meta_architecture = model_config.WhichOneof('model')
if meta_architecture == 'ssd':
return _build_ssd_model(model_config.ssd, is_training, add_summaries)
if meta_architecture == 'faster_rcnn':
return _build_faster_rcnn_model(model_config.faster_rcnn, is_training,
add_summaries)
raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
示例8: test_build_ssd_anchor_generator_with_custom_interpolated_scale
# 需要导入模块: from object_detection.builders import anchor_generator_builder [as 别名]
# 或者: from object_detection.builders.anchor_generator_builder import build [as 别名]
def test_build_ssd_anchor_generator_with_custom_interpolated_scale(self):
anchor_generator_text_proto = """
ssd_anchor_generator {
aspect_ratios: [0.5]
interpolated_scale_aspect_ratio: 0.5
reduce_boxes_in_lowest_layer: false
}
"""
anchor_generator_proto = anchor_generator_pb2.AnchorGenerator()
text_format.Merge(anchor_generator_text_proto, anchor_generator_proto)
anchor_generator_object = anchor_generator_builder.build(
anchor_generator_proto)
self.assertTrue(isinstance(anchor_generator_object,
multiple_grid_anchor_generator.
MultipleGridAnchorGenerator))
for actual_aspect_ratio, expected_aspect_ratio in zip(
list(anchor_generator_object._aspect_ratios),
6 * [(0.5, 0.5)]):
self.assert_almost_list_equal(expected_aspect_ratio, actual_aspect_ratio)
开发者ID:cagbal,项目名称:ros_people_object_detection_tensorflow,代码行数:21,代码来源:anchor_generator_builder_test.py
示例9: _build_ssd_feature_extractor
# 需要导入模块: from object_detection.builders import anchor_generator_builder [as 别名]
# 或者: from object_detection.builders.anchor_generator_builder import build [as 别名]
def _build_ssd_feature_extractor(feature_extractor_config, is_training,
reuse_weights=None):
"""Builds a ssd_meta_arch.SSDFeatureExtractor based on config.
Args:
feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
is_training: True if this feature extractor is being built for training.
reuse_weights: if the feature extractor should reuse weights.
Returns:
ssd_meta_arch.SSDFeatureExtractor based on config.
Raises:
ValueError: On invalid feature extractor type.
"""
feature_type = feature_extractor_config.type
depth_multiplier = feature_extractor_config.depth_multiplier
min_depth = feature_extractor_config.min_depth
conv_hyperparams = hyperparams_builder.build(
feature_extractor_config.conv_hyperparams, is_training)
if feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP:
raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))
feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
return feature_extractor_class(depth_multiplier, min_depth, conv_hyperparams,
reuse_weights)
示例10: test_build_grid_anchor_generator_with_non_default_parameters
# 需要导入模块: from object_detection.builders import anchor_generator_builder [as 别名]
# 或者: from object_detection.builders.anchor_generator_builder import build [as 别名]
def test_build_grid_anchor_generator_with_non_default_parameters(self):
anchor_generator_text_proto = """
grid_anchor_generator {
height: 128
width: 512
height_stride: 10
width_stride: 20
height_offset: 30
width_offset: 40
scales: [0.4, 2.2]
aspect_ratios: [0.3, 4.5]
}
"""
anchor_generator_proto = anchor_generator_pb2.AnchorGenerator()
text_format.Merge(anchor_generator_text_proto, anchor_generator_proto)
anchor_generator_object = anchor_generator_builder.build(
anchor_generator_proto)
self.assertTrue(isinstance(anchor_generator_object,
grid_anchor_generator.GridAnchorGenerator))
self.assert_almost_list_equal(anchor_generator_object._scales,
[0.4, 2.2])
self.assert_almost_list_equal(anchor_generator_object._aspect_ratios,
[0.3, 4.5])
with self.test_session() as sess:
base_anchor_size, anchor_offset, anchor_stride = sess.run(
[anchor_generator_object._base_anchor_size,
anchor_generator_object._anchor_offset,
anchor_generator_object._anchor_stride])
self.assertAllEqual(anchor_offset, [30, 40])
self.assertAllEqual(anchor_stride, [10, 20])
self.assertAllEqual(base_anchor_size, [128, 512])