本文整理汇总了Python中object_detection.box_coders.mean_stddev_box_coder.MeanStddevBoxCoder方法的典型用法代码示例。如果您正苦于以下问题:Python mean_stddev_box_coder.MeanStddevBoxCoder方法的具体用法?Python mean_stddev_box_coder.MeanStddevBoxCoder怎么用?Python mean_stddev_box_coder.MeanStddevBoxCoder使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类object_detection.box_coders.mean_stddev_box_coder
的用法示例。
在下文中一共展示了mean_stddev_box_coder.MeanStddevBoxCoder方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_raises_error_on_invalid_groundtruth_labels
# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def test_raises_error_on_invalid_groundtruth_labels(self):
similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
matcher = bipartite_matcher.GreedyBipartiteMatcher()
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
unmatched_cls_target = tf.constant([[0, 0], [0, 0], [0, 0]], tf.float32)
target_assigner = targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder,
unmatched_cls_target=unmatched_cls_target)
prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5]])
prior_stddevs = tf.constant([[1.0, 1.0, 1.0, 1.0]])
priors = box_list.BoxList(prior_means)
priors.add_field('stddev', prior_stddevs)
box_corners = [[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.9, 0.9],
[.75, 0, .95, .27]]
boxes = box_list.BoxList(tf.constant(box_corners))
groundtruth_labels = tf.constant([[[0, 1], [1, 0]]], tf.float32)
with self.assertRaises(ValueError):
target_assigner.assign(priors, boxes, groundtruth_labels,
num_valid_rows=3)
示例2: test_raises_error_on_invalid_groundtruth_labels
# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def test_raises_error_on_invalid_groundtruth_labels(self):
similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
matcher = bipartite_matcher.GreedyBipartiteMatcher()
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
unmatched_cls_target = tf.constant([[0, 0], [0, 0], [0, 0]], tf.float32)
target_assigner = targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder,
unmatched_cls_target=unmatched_cls_target)
prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5]])
prior_stddevs = tf.constant([[1.0, 1.0, 1.0, 1.0]])
priors = box_list.BoxList(prior_means)
priors.add_field('stddev', prior_stddevs)
box_corners = [[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.9, 0.9],
[.75, 0, .95, .27]]
boxes = box_list.BoxList(tf.constant(box_corners))
groundtruth_labels = tf.constant([[[0, 1], [1, 0]]], tf.float32)
with self.assertRaises(ValueError):
target_assigner.assign(priors, boxes, groundtruth_labels,
num_valid_rows=3)
示例3: test_raises_error_on_invalid_groundtruth_labels
# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def test_raises_error_on_invalid_groundtruth_labels(self):
similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
matcher = bipartite_matcher.GreedyBipartiteMatcher()
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=1.0)
unmatched_cls_target = tf.constant([[0, 0], [0, 0], [0, 0]], tf.float32)
target_assigner = targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder,
unmatched_cls_target=unmatched_cls_target)
prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5]])
priors = box_list.BoxList(prior_means)
box_corners = [[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.9, 0.9],
[.75, 0, .95, .27]]
boxes = box_list.BoxList(tf.constant(box_corners))
groundtruth_labels = tf.constant([[[0, 1], [1, 0]]], tf.float32)
with self.assertRaises(ValueError):
target_assigner.assign(priors, boxes, groundtruth_labels,
num_valid_rows=3)
示例4: testGetCorrectRelativeCodesAfterEncoding
# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def testGetCorrectRelativeCodesAfterEncoding(self):
box_corners = [[0.0, 0.0, 0.5, 0.5], [0.0, 0.0, 0.5, 0.5]]
boxes = box_list.BoxList(tf.constant(box_corners))
expected_rel_codes = [[0.0, 0.0, 0.0, 0.0], [-5.0, -5.0, -5.0, -3.0]]
prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 1.0, 0.8]])
prior_stddevs = tf.constant(2 * [4 * [.1]])
priors = box_list.BoxList(prior_means)
priors.add_field('stddev', prior_stddevs)
coder = mean_stddev_box_coder.MeanStddevBoxCoder()
rel_codes = coder.encode(boxes, priors)
with self.test_session() as sess:
rel_codes_out = sess.run(rel_codes)
self.assertAllClose(rel_codes_out, expected_rel_codes)
示例5: testGetCorrectBoxesAfterDecoding
# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def testGetCorrectBoxesAfterDecoding(self):
rel_codes = tf.constant([[0.0, 0.0, 0.0, 0.0], [-5.0, -5.0, -5.0, -3.0]])
expected_box_corners = [[0.0, 0.0, 0.5, 0.5], [0.0, 0.0, 0.5, 0.5]]
prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 1.0, 0.8]])
prior_stddevs = tf.constant(2 * [4 * [.1]])
priors = box_list.BoxList(prior_means)
priors.add_field('stddev', prior_stddevs)
coder = mean_stddev_box_coder.MeanStddevBoxCoder()
decoded_boxes = coder.decode(rel_codes, priors)
decoded_box_corners = decoded_boxes.get()
with self.test_session() as sess:
decoded_out = sess.run(decoded_box_corners)
self.assertAllClose(decoded_out, expected_box_corners)
示例6: _get_agnostic_target_assigner
# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def _get_agnostic_target_assigner(self):
similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
matcher = bipartite_matcher.GreedyBipartiteMatcher()
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
return targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder,
positive_class_weight=1.0,
negative_class_weight=1.0,
unmatched_cls_target=None)
示例7: _get_multi_class_target_assigner
# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def _get_multi_class_target_assigner(self, num_classes):
similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
matcher = bipartite_matcher.GreedyBipartiteMatcher()
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
unmatched_cls_target = tf.constant([1] + num_classes * [0], tf.float32)
return targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder,
positive_class_weight=1.0,
negative_class_weight=1.0,
unmatched_cls_target=unmatched_cls_target)
示例8: test_build_mean_stddev_box_coder
# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def test_build_mean_stddev_box_coder(self):
box_coder_text_proto = """
mean_stddev_box_coder {
}
"""
box_coder_proto = box_coder_pb2.BoxCoder()
text_format.Merge(box_coder_text_proto, box_coder_proto)
box_coder_object = box_coder_builder.build(box_coder_proto)
self.assertTrue(
isinstance(box_coder_object,
mean_stddev_box_coder.MeanStddevBoxCoder))
示例9: build
# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def build(box_coder_config):
"""Builds a box coder object based on the box coder config.
Args:
box_coder_config: A box_coder.proto object containing the config for the
desired box coder.
Returns:
BoxCoder based on the config.
Raises:
ValueError: On empty box coder proto.
"""
if not isinstance(box_coder_config, box_coder_pb2.BoxCoder):
raise ValueError('box_coder_config not of type box_coder_pb2.BoxCoder.')
if box_coder_config.WhichOneof('box_coder_oneof') == 'faster_rcnn_box_coder':
return faster_rcnn_box_coder.FasterRcnnBoxCoder(scale_factors=[
box_coder_config.faster_rcnn_box_coder.y_scale,
box_coder_config.faster_rcnn_box_coder.x_scale,
box_coder_config.faster_rcnn_box_coder.height_scale,
box_coder_config.faster_rcnn_box_coder.width_scale
])
if (box_coder_config.WhichOneof('box_coder_oneof') ==
'mean_stddev_box_coder'):
return mean_stddev_box_coder.MeanStddevBoxCoder()
if box_coder_config.WhichOneof('box_coder_oneof') == 'square_box_coder':
return square_box_coder.SquareBoxCoder(scale_factors=[
box_coder_config.square_box_coder.y_scale,
box_coder_config.square_box_coder.x_scale,
box_coder_config.square_box_coder.length_scale
])
raise ValueError('Empty box coder.')
示例10: testGetCorrectRelativeCodesAfterEncoding
# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def testGetCorrectRelativeCodesAfterEncoding(self):
box_corners = [[0.0, 0.0, 0.5, 0.5], [0.0, 0.0, 0.5, 0.5]]
boxes = box_list.BoxList(tf.constant(box_corners))
expected_rel_codes = [[0.0, 0.0, 0.0, 0.0], [-5.0, -5.0, -5.0, -3.0]]
prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 1.0, 0.8]])
priors = box_list.BoxList(prior_means)
coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1)
rel_codes = coder.encode(boxes, priors)
with self.test_session() as sess:
rel_codes_out = sess.run(rel_codes)
self.assertAllClose(rel_codes_out, expected_rel_codes)
示例11: testGetCorrectBoxesAfterDecoding
# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def testGetCorrectBoxesAfterDecoding(self):
rel_codes = tf.constant([[0.0, 0.0, 0.0, 0.0], [-5.0, -5.0, -5.0, -3.0]])
expected_box_corners = [[0.0, 0.0, 0.5, 0.5], [0.0, 0.0, 0.5, 0.5]]
prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 1.0, 0.8]])
priors = box_list.BoxList(prior_means)
coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1)
decoded_boxes = coder.decode(rel_codes, priors)
decoded_box_corners = decoded_boxes.get()
with self.test_session() as sess:
decoded_out = sess.run(decoded_box_corners)
self.assertAllClose(decoded_out, expected_box_corners)
示例12: test_assign_agnostic
# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def test_assign_agnostic(self):
def graph_fn(anchor_means, groundtruth_box_corners):
similarity_calc = region_similarity_calculator.IouSimilarity()
matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
unmatched_threshold=0.5)
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1)
target_assigner = targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder)
anchors_boxlist = box_list.BoxList(anchor_means)
groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners)
result = target_assigner.assign(
anchors_boxlist, groundtruth_boxlist, unmatched_class_label=None)
(cls_targets, cls_weights, reg_targets, reg_weights, _) = result
return (cls_targets, cls_weights, reg_targets, reg_weights)
anchor_means = np.array([[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 1.0, 0.8],
[0, 0.5, .5, 1.0]], dtype=np.float32)
groundtruth_box_corners = np.array([[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.9, 0.9]],
dtype=np.float32)
exp_cls_targets = [[1], [1], [0]]
exp_cls_weights = [[1], [1], [1]]
exp_reg_targets = [[0, 0, 0, 0],
[0, 0, -1, 1],
[0, 0, 0, 0]]
exp_reg_weights = [1, 1, 0]
(cls_targets_out,
cls_weights_out, reg_targets_out, reg_weights_out) = self.execute(
graph_fn, [anchor_means, groundtruth_box_corners])
self.assertAllClose(cls_targets_out, exp_cls_targets)
self.assertAllClose(cls_weights_out, exp_cls_weights)
self.assertAllClose(reg_targets_out, exp_reg_targets)
self.assertAllClose(reg_weights_out, exp_reg_weights)
self.assertEquals(cls_targets_out.dtype, np.float32)
self.assertEquals(cls_weights_out.dtype, np.float32)
self.assertEquals(reg_targets_out.dtype, np.float32)
self.assertEquals(reg_weights_out.dtype, np.float32)
示例13: test_raises_error_on_incompatible_groundtruth_boxes_and_labels
# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def test_raises_error_on_incompatible_groundtruth_boxes_and_labels(self):
similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
matcher = bipartite_matcher.GreedyBipartiteMatcher()
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
unmatched_class_label = tf.constant([1, 0, 0, 0, 0, 0, 0], tf.float32)
target_assigner = targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder)
prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 1.0, 0.8],
[0, 0.5, .5, 1.0],
[.75, 0, 1.0, .25]])
priors = box_list.BoxList(prior_means)
box_corners = [[0.0, 0.0, 0.5, 0.5],
[0.0, 0.0, 0.5, 0.8],
[0.5, 0.5, 0.9, 0.9],
[.75, 0, .95, .27]]
boxes = box_list.BoxList(tf.constant(box_corners))
groundtruth_labels = tf.constant([[0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 1, 0, 0, 0]], tf.float32)
with self.assertRaisesRegexp(ValueError, 'Unequal shapes'):
target_assigner.assign(
priors,
boxes,
groundtruth_labels,
unmatched_class_label=unmatched_class_label)
示例14: _get_target_assigner
# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def _get_target_assigner(self):
similarity_calc = region_similarity_calculator.IouSimilarity()
matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
unmatched_threshold=0.5)
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1)
return targetassigner.TargetAssigner(similarity_calc, matcher, box_coder)
示例15: test_assign_agnostic
# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def test_assign_agnostic(self):
def graph_fn(anchor_means, anchor_stddevs, groundtruth_box_corners):
similarity_calc = region_similarity_calculator.IouSimilarity()
matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
unmatched_threshold=0.5)
box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
target_assigner = targetassigner.TargetAssigner(
similarity_calc, matcher, box_coder, unmatched_cls_target=None)
anchors_boxlist = box_list.BoxList(anchor_means)
anchors_boxlist.add_field('stddev', anchor_stddevs)
groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners)
result = target_assigner.assign(anchors_boxlist, groundtruth_boxlist)
(cls_targets, cls_weights, reg_targets, reg_weights, _) = result
return (cls_targets, cls_weights, reg_targets, reg_weights)
anchor_means = np.array([[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 1.0, 0.8],
[0, 0.5, .5, 1.0]], dtype=np.float32)
anchor_stddevs = np.array(3 * [4 * [.1]], dtype=np.float32)
groundtruth_box_corners = np.array([[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.9, 0.9]],
dtype=np.float32)
exp_cls_targets = [[1], [1], [0]]
exp_cls_weights = [1, 1, 1]
exp_reg_targets = [[0, 0, 0, 0],
[0, 0, -1, 1],
[0, 0, 0, 0]]
exp_reg_weights = [1, 1, 0]
(cls_targets_out, cls_weights_out, reg_targets_out,
reg_weights_out) = self.execute(graph_fn, [anchor_means, anchor_stddevs,
groundtruth_box_corners])
self.assertAllClose(cls_targets_out, exp_cls_targets)
self.assertAllClose(cls_weights_out, exp_cls_weights)
self.assertAllClose(reg_targets_out, exp_reg_targets)
self.assertAllClose(reg_weights_out, exp_reg_weights)
self.assertEquals(cls_targets_out.dtype, np.float32)
self.assertEquals(cls_weights_out.dtype, np.float32)
self.assertEquals(reg_targets_out.dtype, np.float32)
self.assertEquals(reg_weights_out.dtype, np.float32)