当前位置: 首页>>代码示例>>Python>>正文


Python mean_stddev_box_coder.MeanStddevBoxCoder方法代码示例

本文整理汇总了Python中object_detection.box_coders.mean_stddev_box_coder.MeanStddevBoxCoder方法的典型用法代码示例。如果您正苦于以下问题:Python mean_stddev_box_coder.MeanStddevBoxCoder方法的具体用法?Python mean_stddev_box_coder.MeanStddevBoxCoder怎么用?Python mean_stddev_box_coder.MeanStddevBoxCoder使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在object_detection.box_coders.mean_stddev_box_coder的用法示例。


在下文中一共展示了mean_stddev_box_coder.MeanStddevBoxCoder方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_raises_error_on_invalid_groundtruth_labels

# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def test_raises_error_on_invalid_groundtruth_labels(self):
    similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
    matcher = bipartite_matcher.GreedyBipartiteMatcher()
    box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
    unmatched_cls_target = tf.constant([[0, 0], [0, 0], [0, 0]], tf.float32)
    target_assigner = targetassigner.TargetAssigner(
        similarity_calc, matcher, box_coder,
        unmatched_cls_target=unmatched_cls_target)

    prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5]])
    prior_stddevs = tf.constant([[1.0, 1.0, 1.0, 1.0]])
    priors = box_list.BoxList(prior_means)
    priors.add_field('stddev', prior_stddevs)

    box_corners = [[0.0, 0.0, 0.5, 0.5],
                   [0.5, 0.5, 0.9, 0.9],
                   [.75, 0, .95, .27]]
    boxes = box_list.BoxList(tf.constant(box_corners))

    groundtruth_labels = tf.constant([[[0, 1], [1, 0]]], tf.float32)

    with self.assertRaises(ValueError):
      target_assigner.assign(priors, boxes, groundtruth_labels,
                             num_valid_rows=3) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:26,代码来源:target_assigner_test.py

示例2: test_raises_error_on_invalid_groundtruth_labels

# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def test_raises_error_on_invalid_groundtruth_labels(self):
    similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
    matcher = bipartite_matcher.GreedyBipartiteMatcher()
    box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
    unmatched_cls_target = tf.constant([[0, 0], [0, 0], [0, 0]], tf.float32)
    target_assigner = targetassigner.TargetAssigner(
        similarity_calc, matcher, box_coder,
        unmatched_cls_target=unmatched_cls_target)

    prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5]])
    prior_stddevs = tf.constant([[1.0, 1.0, 1.0, 1.0]])
    priors = box_list.BoxList(prior_means)
    priors.add_field('stddev', prior_stddevs)

    box_corners = [[0.0, 0.0, 0.5, 0.5],
                   [0.5, 0.5, 0.9, 0.9],
                   [.75, 0, .95, .27]]
    boxes = box_list.BoxList(tf.constant(box_corners))
    groundtruth_labels = tf.constant([[[0, 1], [1, 0]]], tf.float32)

    with self.assertRaises(ValueError):
      target_assigner.assign(priors, boxes, groundtruth_labels,
                             num_valid_rows=3) 
开发者ID:cagbal,项目名称:ros_people_object_detection_tensorflow,代码行数:25,代码来源:target_assigner_test.py

示例3: test_raises_error_on_invalid_groundtruth_labels

# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def test_raises_error_on_invalid_groundtruth_labels(self):
    similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
    matcher = bipartite_matcher.GreedyBipartiteMatcher()
    box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=1.0)
    unmatched_cls_target = tf.constant([[0, 0], [0, 0], [0, 0]], tf.float32)
    target_assigner = targetassigner.TargetAssigner(
        similarity_calc, matcher, box_coder,
        unmatched_cls_target=unmatched_cls_target)

    prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5]])
    priors = box_list.BoxList(prior_means)

    box_corners = [[0.0, 0.0, 0.5, 0.5],
                   [0.5, 0.5, 0.9, 0.9],
                   [.75, 0, .95, .27]]
    boxes = box_list.BoxList(tf.constant(box_corners))
    groundtruth_labels = tf.constant([[[0, 1], [1, 0]]], tf.float32)

    with self.assertRaises(ValueError):
      target_assigner.assign(priors, boxes, groundtruth_labels,
                             num_valid_rows=3) 
开发者ID:ambakick,项目名称:Person-Detection-and-Tracking,代码行数:23,代码来源:target_assigner_test.py

示例4: testGetCorrectRelativeCodesAfterEncoding

# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def testGetCorrectRelativeCodesAfterEncoding(self):
    box_corners = [[0.0, 0.0, 0.5, 0.5], [0.0, 0.0, 0.5, 0.5]]
    boxes = box_list.BoxList(tf.constant(box_corners))
    expected_rel_codes = [[0.0, 0.0, 0.0, 0.0], [-5.0, -5.0, -5.0, -3.0]]
    prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 1.0, 0.8]])
    prior_stddevs = tf.constant(2 * [4 * [.1]])
    priors = box_list.BoxList(prior_means)
    priors.add_field('stddev', prior_stddevs)

    coder = mean_stddev_box_coder.MeanStddevBoxCoder()
    rel_codes = coder.encode(boxes, priors)
    with self.test_session() as sess:
      rel_codes_out = sess.run(rel_codes)
      self.assertAllClose(rel_codes_out, expected_rel_codes) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:16,代码来源:mean_stddev_box_coder_test.py

示例5: testGetCorrectBoxesAfterDecoding

# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def testGetCorrectBoxesAfterDecoding(self):
    rel_codes = tf.constant([[0.0, 0.0, 0.0, 0.0], [-5.0, -5.0, -5.0, -3.0]])
    expected_box_corners = [[0.0, 0.0, 0.5, 0.5], [0.0, 0.0, 0.5, 0.5]]
    prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 1.0, 0.8]])
    prior_stddevs = tf.constant(2 * [4 * [.1]])
    priors = box_list.BoxList(prior_means)
    priors.add_field('stddev', prior_stddevs)

    coder = mean_stddev_box_coder.MeanStddevBoxCoder()
    decoded_boxes = coder.decode(rel_codes, priors)
    decoded_box_corners = decoded_boxes.get()
    with self.test_session() as sess:
      decoded_out = sess.run(decoded_box_corners)
      self.assertAllClose(decoded_out, expected_box_corners) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:16,代码来源:mean_stddev_box_coder_test.py

示例6: _get_agnostic_target_assigner

# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def _get_agnostic_target_assigner(self):
    similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
    matcher = bipartite_matcher.GreedyBipartiteMatcher()
    box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
    return targetassigner.TargetAssigner(
        similarity_calc, matcher, box_coder,
        positive_class_weight=1.0,
        negative_class_weight=1.0,
        unmatched_cls_target=None) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:11,代码来源:target_assigner_test.py

示例7: _get_multi_class_target_assigner

# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def _get_multi_class_target_assigner(self, num_classes):
    similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
    matcher = bipartite_matcher.GreedyBipartiteMatcher()
    box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
    unmatched_cls_target = tf.constant([1] + num_classes * [0], tf.float32)
    return targetassigner.TargetAssigner(
        similarity_calc, matcher, box_coder,
        positive_class_weight=1.0,
        negative_class_weight=1.0,
        unmatched_cls_target=unmatched_cls_target) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:12,代码来源:target_assigner_test.py

示例8: test_build_mean_stddev_box_coder

# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def test_build_mean_stddev_box_coder(self):
    box_coder_text_proto = """
      mean_stddev_box_coder {
      }
    """
    box_coder_proto = box_coder_pb2.BoxCoder()
    text_format.Merge(box_coder_text_proto, box_coder_proto)
    box_coder_object = box_coder_builder.build(box_coder_proto)
    self.assertTrue(
        isinstance(box_coder_object,
                   mean_stddev_box_coder.MeanStddevBoxCoder)) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:13,代码来源:box_coder_builder_test.py

示例9: build

# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def build(box_coder_config):
  """Builds a box coder object based on the box coder config.

  Args:
    box_coder_config: A box_coder.proto object containing the config for the
      desired box coder.

  Returns:
    BoxCoder based on the config.

  Raises:
    ValueError: On empty box coder proto.
  """
  if not isinstance(box_coder_config, box_coder_pb2.BoxCoder):
    raise ValueError('box_coder_config not of type box_coder_pb2.BoxCoder.')

  if box_coder_config.WhichOneof('box_coder_oneof') == 'faster_rcnn_box_coder':
    return faster_rcnn_box_coder.FasterRcnnBoxCoder(scale_factors=[
        box_coder_config.faster_rcnn_box_coder.y_scale,
        box_coder_config.faster_rcnn_box_coder.x_scale,
        box_coder_config.faster_rcnn_box_coder.height_scale,
        box_coder_config.faster_rcnn_box_coder.width_scale
    ])
  if (box_coder_config.WhichOneof('box_coder_oneof') ==
      'mean_stddev_box_coder'):
    return mean_stddev_box_coder.MeanStddevBoxCoder()
  if box_coder_config.WhichOneof('box_coder_oneof') == 'square_box_coder':
    return square_box_coder.SquareBoxCoder(scale_factors=[
        box_coder_config.square_box_coder.y_scale,
        box_coder_config.square_box_coder.x_scale,
        box_coder_config.square_box_coder.length_scale
    ])
  raise ValueError('Empty box coder.') 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:35,代码来源:box_coder_builder.py

示例10: testGetCorrectRelativeCodesAfterEncoding

# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def testGetCorrectRelativeCodesAfterEncoding(self):
    box_corners = [[0.0, 0.0, 0.5, 0.5], [0.0, 0.0, 0.5, 0.5]]
    boxes = box_list.BoxList(tf.constant(box_corners))
    expected_rel_codes = [[0.0, 0.0, 0.0, 0.0], [-5.0, -5.0, -5.0, -3.0]]
    prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 1.0, 0.8]])
    priors = box_list.BoxList(prior_means)

    coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1)
    rel_codes = coder.encode(boxes, priors)
    with self.test_session() as sess:
      rel_codes_out = sess.run(rel_codes)
      self.assertAllClose(rel_codes_out, expected_rel_codes) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:14,代码来源:mean_stddev_box_coder_test.py

示例11: testGetCorrectBoxesAfterDecoding

# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def testGetCorrectBoxesAfterDecoding(self):
    rel_codes = tf.constant([[0.0, 0.0, 0.0, 0.0], [-5.0, -5.0, -5.0, -3.0]])
    expected_box_corners = [[0.0, 0.0, 0.5, 0.5], [0.0, 0.0, 0.5, 0.5]]
    prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 1.0, 0.8]])
    priors = box_list.BoxList(prior_means)

    coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1)
    decoded_boxes = coder.decode(rel_codes, priors)
    decoded_box_corners = decoded_boxes.get()
    with self.test_session() as sess:
      decoded_out = sess.run(decoded_box_corners)
      self.assertAllClose(decoded_out, expected_box_corners) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:14,代码来源:mean_stddev_box_coder_test.py

示例12: test_assign_agnostic

# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def test_assign_agnostic(self):
    def graph_fn(anchor_means, groundtruth_box_corners):
      similarity_calc = region_similarity_calculator.IouSimilarity()
      matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
                                             unmatched_threshold=0.5)
      box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1)
      target_assigner = targetassigner.TargetAssigner(
          similarity_calc, matcher, box_coder)
      anchors_boxlist = box_list.BoxList(anchor_means)
      groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners)
      result = target_assigner.assign(
          anchors_boxlist, groundtruth_boxlist, unmatched_class_label=None)
      (cls_targets, cls_weights, reg_targets, reg_weights, _) = result
      return (cls_targets, cls_weights, reg_targets, reg_weights)

    anchor_means = np.array([[0.0, 0.0, 0.5, 0.5],
                             [0.5, 0.5, 1.0, 0.8],
                             [0, 0.5, .5, 1.0]], dtype=np.float32)
    groundtruth_box_corners = np.array([[0.0, 0.0, 0.5, 0.5],
                                        [0.5, 0.5, 0.9, 0.9]],
                                       dtype=np.float32)
    exp_cls_targets = [[1], [1], [0]]
    exp_cls_weights = [[1], [1], [1]]
    exp_reg_targets = [[0, 0, 0, 0],
                       [0, 0, -1, 1],
                       [0, 0, 0, 0]]
    exp_reg_weights = [1, 1, 0]

    (cls_targets_out,
     cls_weights_out, reg_targets_out, reg_weights_out) = self.execute(
         graph_fn, [anchor_means, groundtruth_box_corners])
    self.assertAllClose(cls_targets_out, exp_cls_targets)
    self.assertAllClose(cls_weights_out, exp_cls_weights)
    self.assertAllClose(reg_targets_out, exp_reg_targets)
    self.assertAllClose(reg_weights_out, exp_reg_weights)
    self.assertEquals(cls_targets_out.dtype, np.float32)
    self.assertEquals(cls_weights_out.dtype, np.float32)
    self.assertEquals(reg_targets_out.dtype, np.float32)
    self.assertEquals(reg_weights_out.dtype, np.float32) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:41,代码来源:target_assigner_test.py

示例13: test_raises_error_on_incompatible_groundtruth_boxes_and_labels

# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def test_raises_error_on_incompatible_groundtruth_boxes_and_labels(self):
    similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
    matcher = bipartite_matcher.GreedyBipartiteMatcher()
    box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
    unmatched_class_label = tf.constant([1, 0, 0, 0, 0, 0, 0], tf.float32)
    target_assigner = targetassigner.TargetAssigner(
        similarity_calc, matcher, box_coder)

    prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5],
                               [0.5, 0.5, 1.0, 0.8],
                               [0, 0.5, .5, 1.0],
                               [.75, 0, 1.0, .25]])
    priors = box_list.BoxList(prior_means)

    box_corners = [[0.0, 0.0, 0.5, 0.5],
                   [0.0, 0.0, 0.5, 0.8],
                   [0.5, 0.5, 0.9, 0.9],
                   [.75, 0, .95, .27]]
    boxes = box_list.BoxList(tf.constant(box_corners))

    groundtruth_labels = tf.constant([[0, 1, 0, 0, 0, 0, 0],
                                      [0, 0, 0, 0, 0, 1, 0],
                                      [0, 0, 0, 1, 0, 0, 0]], tf.float32)
    with self.assertRaisesRegexp(ValueError, 'Unequal shapes'):
      target_assigner.assign(
          priors,
          boxes,
          groundtruth_labels,
          unmatched_class_label=unmatched_class_label) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:31,代码来源:target_assigner_test.py

示例14: _get_target_assigner

# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def _get_target_assigner(self):
    similarity_calc = region_similarity_calculator.IouSimilarity()
    matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
                                           unmatched_threshold=0.5)
    box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1)
    return targetassigner.TargetAssigner(similarity_calc, matcher, box_coder) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:8,代码来源:target_assigner_test.py

示例15: test_assign_agnostic

# 需要导入模块: from object_detection.box_coders import mean_stddev_box_coder [as 别名]
# 或者: from object_detection.box_coders.mean_stddev_box_coder import MeanStddevBoxCoder [as 别名]
def test_assign_agnostic(self):
    def graph_fn(anchor_means, anchor_stddevs, groundtruth_box_corners):
      similarity_calc = region_similarity_calculator.IouSimilarity()
      matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
                                             unmatched_threshold=0.5)
      box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
      target_assigner = targetassigner.TargetAssigner(
          similarity_calc, matcher, box_coder, unmatched_cls_target=None)
      anchors_boxlist = box_list.BoxList(anchor_means)
      anchors_boxlist.add_field('stddev', anchor_stddevs)
      groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners)
      result = target_assigner.assign(anchors_boxlist, groundtruth_boxlist)
      (cls_targets, cls_weights, reg_targets, reg_weights, _) = result
      return (cls_targets, cls_weights, reg_targets, reg_weights)

    anchor_means = np.array([[0.0, 0.0, 0.5, 0.5],
                             [0.5, 0.5, 1.0, 0.8],
                             [0, 0.5, .5, 1.0]], dtype=np.float32)
    anchor_stddevs = np.array(3 * [4 * [.1]], dtype=np.float32)
    groundtruth_box_corners = np.array([[0.0, 0.0, 0.5, 0.5],
                                        [0.5, 0.5, 0.9, 0.9]],
                                       dtype=np.float32)
    exp_cls_targets = [[1], [1], [0]]
    exp_cls_weights = [1, 1, 1]
    exp_reg_targets = [[0, 0, 0, 0],
                       [0, 0, -1, 1],
                       [0, 0, 0, 0]]
    exp_reg_weights = [1, 1, 0]

    (cls_targets_out, cls_weights_out, reg_targets_out,
     reg_weights_out) = self.execute(graph_fn, [anchor_means, anchor_stddevs,
                                                groundtruth_box_corners])
    self.assertAllClose(cls_targets_out, exp_cls_targets)
    self.assertAllClose(cls_weights_out, exp_cls_weights)
    self.assertAllClose(reg_targets_out, exp_reg_targets)
    self.assertAllClose(reg_weights_out, exp_reg_weights)
    self.assertEquals(cls_targets_out.dtype, np.float32)
    self.assertEquals(cls_weights_out.dtype, np.float32)
    self.assertEquals(reg_targets_out.dtype, np.float32)
    self.assertEquals(reg_weights_out.dtype, np.float32) 
开发者ID:cagbal,项目名称:ros_people_object_detection_tensorflow,代码行数:42,代码来源:target_assigner_test.py


注:本文中的object_detection.box_coders.mean_stddev_box_coder.MeanStddevBoxCoder方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。