当前位置: 首页>>代码示例>>Python>>正文


Python ops.FileReader方法代码示例

本文整理汇总了Python中nvidia.dali.ops.FileReader方法的典型用法代码示例。如果您正苦于以下问题:Python ops.FileReader方法的具体用法?Python ops.FileReader怎么用?Python ops.FileReader使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nvidia.dali.ops的用法示例。


在下文中一共展示了ops.FileReader方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from nvidia.dali import ops [as 别名]
# 或者: from nvidia.dali.ops import FileReader [as 别名]
def __init__(self, file_list, file_root, crop_size,
                 batch_size, n_threads, device_id,
                 random_shuffle=False, seed=-1, mean=None, std=None,
                 n_samples=None):
        super(DaliPipelineVal, self).__init__(batch_size, n_threads,
                                              device_id, seed=seed)
        crop_size = _pair(crop_size)
        if mean is None:
            mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
        if std is None:
            std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
        if n_samples is None:
            initial_fill = 512
        else:
            initial_fill = min(512, n_samples)
        self.loader = ops.FileReader(file_root=file_root, file_list=file_list,
                                     random_shuffle=random_shuffle,
                                     initial_fill=initial_fill)
        self.decode = ops.HostDecoder()
        self.resize = ops.Resize(device='gpu', resize_x=256, resize_y=256)
        self.cmnorm = ops.CropMirrorNormalize(
            device='gpu', crop=list(crop_size), mean=mean, std=std) 
开发者ID:chainer,项目名称:chainer,代码行数:24,代码来源:dali_util.py

示例2: __init__

# 需要导入模块: from nvidia.dali import ops [as 别名]
# 或者: from nvidia.dali.ops import FileReader [as 别名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, size):
        super(HybridValPipe, self).__init__(batch_size, num_threads, device_id, seed = 12 + device_id)
        if torch.distributed.is_initialized():
            local_rank = torch.distributed.get_rank()
            world_size = torch.distributed.get_world_size()
        else:
            local_rank = 0
            world_size = 1

        self.input = ops.FileReader(
                file_root = data_dir,
                shard_id = local_rank,
                num_shards = world_size,
                random_shuffle = False)

        self.decode = ops.nvJPEGDecoder(device = "mixed", output_type = types.RGB)
        self.res = ops.Resize(device = "gpu", resize_shorter = size)
        self.cmnp = ops.CropMirrorNormalize(device = "gpu",
                output_dtype = types.FLOAT,
                output_layout = types.NCHW,
                crop = (crop, crop),
                image_type = types.RGB,
                mean = [0.485 * 255,0.456 * 255,0.406 * 255],
                std = [0.229 * 255,0.224 * 255,0.225 * 255]) 
开发者ID:d-li14,项目名称:HBONet,代码行数:26,代码来源:dataloaders.py

示例3: __init__

# 需要导入模块: from nvidia.dali import ops [as 别名]
# 或者: from nvidia.dali.ops import FileReader [as 别名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, seed=12, local_rank=0, world_size=1,
                 spos_pre=False):
        super(HybridTrainPipe, self).__init__(batch_size, num_threads, device_id, seed=seed + device_id)
        color_space_type = types.BGR if spos_pre else types.RGB
        self.input = ops.FileReader(file_root=data_dir, shard_id=local_rank, num_shards=world_size, random_shuffle=True)
        self.decode = ops.ImageDecoder(device="mixed", output_type=color_space_type)
        self.res = ops.RandomResizedCrop(device="gpu", size=crop,
                                         interp_type=types.INTERP_LINEAR if spos_pre else types.INTERP_TRIANGULAR)
        self.twist = ops.ColorTwist(device="gpu")
        self.jitter_rng = ops.Uniform(range=[0.6, 1.4])
        self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                            output_dtype=types.FLOAT,
                                            output_layout=types.NCHW,
                                            image_type=color_space_type,
                                            mean=0. if spos_pre else [0.485 * 255, 0.456 * 255, 0.406 * 255],
                                            std=1. if spos_pre else [0.229 * 255, 0.224 * 255, 0.225 * 255])
        self.coin = ops.CoinFlip(probability=0.5) 
开发者ID:microsoft,项目名称:nni,代码行数:19,代码来源:dataloader.py

示例4: __init__

# 需要导入模块: from nvidia.dali import ops [as 别名]
# 或者: from nvidia.dali.ops import FileReader [as 别名]
def __init__(self, batch_size, num_threads, shard_id, image_dir, file_list, nvjpeg_padding,
                 prefetch_queue=3, seed=1, num_shards=1, channel_last=True,
                 spatial_size=(224, 224), dtype="half",
                 mean=_pixel_mean, std=_pixel_std, pad_output=True):
        super(TrainPipeline, self).__init__(
            batch_size, num_threads, shard_id, seed=seed, prefetch_queue_depth=prefetch_queue)
        self.input = ops.FileReader(file_root=image_dir, file_list=file_list,
                                    random_shuffle=True, num_shards=num_shards, shard_id=shard_id)
        self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB,
                                       device_memory_padding=nvjpeg_padding,
                                       host_memory_padding=nvjpeg_padding)

        self.rrc = ops.RandomResizedCrop(device="gpu", size=spatial_size)
        self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                            output_dtype=types.FLOAT16 if dtype == "half" else types.FLOAT,
                                            output_layout=types.NHWC if channel_last else types.NCHW,
                                            crop=spatial_size,
                                            image_type=types.RGB,
                                            mean=mean,
                                            std=std,
                                            pad_output=pad_output)
        self.coin = ops.CoinFlip(probability=0.5) 
开发者ID:sony,项目名称:nnabla-examples,代码行数:24,代码来源:data.py

示例5: __init__

# 需要导入模块: from nvidia.dali import ops [as 别名]
# 或者: from nvidia.dali.ops import FileReader [as 别名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, dali_cpu=False, local_rank=0, world_size=1):
        super(HybridTrainPipe, self).__init__(batch_size, num_threads, device_id, seed=12 + device_id)
        dali_device = "gpu"
        self.input = ops.FileReader(file_root=data_dir, shard_id=local_rank, num_shards=world_size, random_shuffle=True)
        self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB)
        self.res = ops.RandomResizedCrop(device="gpu", size=crop, random_area=[0.08, 1.25])
        self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                            output_dtype=types.FLOAT,
                                            output_layout=types.NCHW,
                                            image_type=types.RGB,
                                            mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
                                            std=[0.229 * 255, 0.224 * 255, 0.225 * 255])
        self.coin = ops.CoinFlip(probability=0.5)
        print('DALI "{0}" variant'.format(dali_device)) 
开发者ID:Jzz24,项目名称:pytorch_quantization,代码行数:16,代码来源:preprocess.py

示例6: __init__

# 需要导入模块: from nvidia.dali import ops [as 别名]
# 或者: from nvidia.dali.ops import FileReader [as 别名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, size,
                 mean, std, local_rank=0, world_size=1, dali_cpu=False, shuffle=False, fp16=False):

        # As we're recreating the Pipeline at every epoch, the seed must be -1 (random seed)
        super(HybridValPipe, self).__init__(batch_size, num_threads, device_id, seed=-1)

        # Enabling read_ahead slowed down processing ~40%
        # Note: initial_fill is for the shuffle buffer.  As we only want to see every example once, this is set to 1
        self.input = ops.FileReader(file_root=data_dir, shard_id=local_rank, num_shards=world_size, random_shuffle=shuffle, initial_fill=1)
        if dali_cpu:
            decode_device = "cpu"
            self.dali_device = "cpu"
            self.crop = ops.Crop(device="cpu", crop=(crop, crop))

        else:
            decode_device = "mixed"
            self.dali_device = "gpu"

            output_dtype = types.FLOAT
            if fp16:
                output_dtype = types.FLOAT16

            self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                                output_dtype=output_dtype,
                                                output_layout=types.NCHW,
                                                crop=(crop, crop),
                                                image_type=types.RGB,
                                                mean=mean,
                                                std=std)

        self.decode = ops.ImageDecoder(device=decode_device, output_type=types.RGB)

        # Resize to desired size.  To match torchvision dataloader, use triangular interpolation
        self.res = ops.Resize(device=self.dali_device, resize_shorter=size, interp_type=types.INTERP_TRIANGULAR) 
开发者ID:yaysummeriscoming,项目名称:DALI_pytorch_demo,代码行数:36,代码来源:dali.py


注:本文中的nvidia.dali.ops.FileReader方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。