本文整理汇总了Python中numpy.vstack方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.vstack方法的具体用法?Python numpy.vstack怎么用?Python numpy.vstack使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy
的用法示例。
在下文中一共展示了numpy.vstack方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: generate_anchors_pre
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import vstack [as 别名]
def generate_anchors_pre(height, width, feat_stride, anchor_scales=(8,16,32), anchor_ratios=(0.5,1,2)):
""" A wrapper function to generate anchors given different scales
Also return the number of anchors in variable 'length'
"""
anchors = generate_anchors(ratios=np.array(anchor_ratios), scales=np.array(anchor_scales))
A = anchors.shape[0]
shift_x = np.arange(0, width) * feat_stride
shift_y = np.arange(0, height) * feat_stride
shift_x, shift_y = np.meshgrid(shift_x, shift_y)
shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose()
K = shifts.shape[0]
# width changes faster, so here it is H, W, C
anchors = anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2))
anchors = anchors.reshape((K * A, 4)).astype(np.float32, copy=False)
length = np.int32(anchors.shape[0])
return anchors, length
开发者ID:Sunarker,项目名称:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代码行数:19,代码来源:snippets.py
示例2: mtx_updated_G
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import vstack [as 别名]
def mtx_updated_G(phi_recon, M, mtx_amp2visi_ri, mtx_fri2visi_ri):
"""
Update the linear transformation matrix that links the FRI sequence to the
visibilities by using the reconstructed Dirac locations.
:param phi_recon: the reconstructed Dirac locations (azimuths)
:param M: the Fourier series expansion is between -M to M
:param p_mic_x: a vector that contains microphones' x-coordinates
:param p_mic_y: a vector that contains microphones' y-coordinates
:param mtx_freq2visi: the linear mapping from Fourier series to visibilities
:return:
"""
L = 2 * M + 1
ms_half = np.reshape(np.arange(-M, 1, step=1), (-1, 1), order='F')
phi_recon = np.reshape(phi_recon, (1, -1), order='F')
mtx_amp2freq = np.exp(-1j * ms_half * phi_recon) # size: (M + 1) x K
mtx_amp2freq_ri = np.vstack((mtx_amp2freq.real, mtx_amp2freq.imag[:-1, :])) # size: (2M + 1) x K
mtx_fri2amp_ri = linalg.lstsq(mtx_amp2freq_ri, np.eye(L))[0]
# projection mtx_freq2visi to the null space of mtx_fri2amp
mtx_null_proj = np.eye(L) - np.dot(mtx_fri2amp_ri.T,
linalg.lstsq(mtx_fri2amp_ri.T, np.eye(L))[0])
G_updated = np.dot(mtx_amp2visi_ri, mtx_fri2amp_ri) + \
np.dot(mtx_fri2visi_ri, mtx_null_proj)
return G_updated
示例3: image_reslice
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import vstack [as 别名]
def image_reslice(image, spec, method=None, fill=0, dtype=None, weights=None, image_type=None):
'''
image_reslice(image, spec) yields a duplicate of the given image resliced to have the voxels
indicated by the given image spec. Note that spec may be an image itself.
Optional arguments that can be passed to image_interpolate() (asside from affine) are allowed
here and are passed through.
'''
if image_type is None and is_image(image): image_type = to_image_type(image)
spec = to_image_spec(spec)
image = to_image(image)
# we make a big mesh and interpolate at these points...
imsh = spec['image_shape']
(args, kw) = ([np.arange(n) for n in imsh[:3]], {'indexing': 'ij'})
ijk = np.asarray([u.flatten() for u in np.meshgrid(*args, **kw)])
ijk = np.dot(spec['affine'], np.vstack([ijk, np.ones([1,ijk.shape[1]])]))[:3]
# interpolate here...
u = image_interpolate(image, ijk, method=method, fill=fill, dtype=dtype, weights=weights)
return to_image((np.reshape(u, imsh), spec), image_type=image_type)
示例4: angle_to_cortex
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import vstack [as 别名]
def angle_to_cortex(self, theta, rho):
'See help(neuropythy.registration.RetinotopyModel.angle_to_cortex).'
#TODO: This should be made to work correctly with visual area boundaries: this could be done
# by, for each area (e.g., V2) looking at its boundaries (with V1 and V3) and flipping the
# adjacent triangles so that there is complete coverage of each hemifield, guaranteed.
if not pimms.is_vector(theta): return self.angle_to_cortex([theta], [rho])[0]
theta = np.asarray(theta)
rho = np.asarray(rho)
zs = np.asarray(
rho * np.exp([np.complex(z) for z in 1j * ((90.0 - theta)/180.0*np.pi)]),
dtype=np.complex)
coords = np.asarray([zs.real, zs.imag]).T
if coords.shape[0] == 0: return np.zeros((0, len(self.visual_meshes), 2))
# we step through each area in the forward model and return the appropriate values
tx = self.transform
res = np.transpose(
[self.visual_meshes[area].interpolate(coords, 'cortical_coordinates', method='linear')
for area in sorted(self.visual_meshes.keys())],
(1,0,2))
if tx is not None:
res = np.asarray(
[np.dot(tx, np.vstack((area_xy.T, np.ones(len(area_xy)))))[0:2].T
for area_xy in res])
return res
示例5: apply_affine
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import vstack [as 别名]
def apply_affine(aff, coords):
'''
apply_affine(affine, coords) yields the result of applying the given affine transformation to
the given coordinate or coordinates.
This function expects coords to be a (dims X n) matrix but if the first dimension is neither 2
nor 3, coords.T is used; i.e.:
apply_affine(affine3x3, coords2xN) ==> newcoords2xN
apply_affine(affine4x4, coords3xN) ==> newcoords3xN
apply_affine(affine3x3, coordsNx2) ==> newcoordsNx2 (for N != 2)
apply_affine(affine4x4, coordsNx3) ==> newcoordsNx3 (for N != 3)
'''
if aff is None: return coords
(coords,tr) = (np.asanyarray(coords), False)
if len(coords.shape) == 1: return np.squeeze(apply_affine(np.reshape(coords, (-1,1)), aff))
elif len(coords.shape) > 2: raise ValueError('cannot apply affine to ND-array for N > 2')
if len(coords) == 2: aff = to_affine(aff, 2)
elif len(coords) == 3: aff = to_affine(aff, 3)
else: (coords,aff,tr) = (coords.T, to_affine(aff, coords.shape[1]), True)
r = np.dot(aff, np.vstack([coords, np.ones([1,coords.shape[1]])]))[:-1]
return r.T if tr else r
示例6: subcurve
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import vstack [as 别名]
def subcurve(self, t0, t1):
'''
curve.subcurve(t0, t1) yields a curve-spline object that is equivalent to the given
curve but that extends from curve(t0) to curve(t1) only.
'''
# if t1 is less than t0, then we want to actually do this in reverse...
if t1 == t0: raise ValueError('Cannot take subcurve of a point')
if t1 < t0:
tt = self.curve_length()
return self.reverse().subcurve(tt - t0, tt - t1)
idx = [ii for (ii,t) in enumerate(self.t) if t0 < t and t < t1]
pt0 = self(t0)
pt1 = self(t1)
coords = np.vstack([[pt0], self.coordinates.T[idx], [pt1]])
ts = np.concatenate([[t0], self.t[idx], [t1]])
dists = None if self.distances is None else np.diff(ts)
return CurveSpline(
coords.T,
order=self.order,
smoothing=self.smoothing,
periodic=False,
distances=dists,
meta_data=self.meta_data)
示例7: breastcancer_cont
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import vstack [as 别名]
def breastcancer_cont(replication=2):
f = open(path + "breast_cancer_wisconsin_cont.txt", "r")
data = np.loadtxt(f, delimiter=",", dtype=np.string0)
x_train = np.array(data[:, range(0, 9)])
y_train = np.array(data[:, 9])
for j in range(replication - 1):
x_train = np.vstack([x_train, data[:, range(0, 9)]])
y_train = np.hstack([y_train, data[:, 9]])
x_train = np.array(x_train, dtype=np.float)
f = open(path + "breast_cancer_wisconsin_cont_test.txt")
data = np.loadtxt(f, delimiter=",", dtype=np.string0)
x_test = np.array(data[:, range(0, 9)])
y_test = np.array(data[:, 9])
for j in range(replication - 1):
x_test = np.vstack([x_test, data[:, range(0, 9)]])
y_test = np.hstack([y_test, data[:, 9]])
x_test = np.array(x_test, dtype=np.float)
return x_train, y_train, x_test, y_test
示例8: breastcancer_disc
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import vstack [as 别名]
def breastcancer_disc(replication=2):
f = open(path + "breast_cancer_wisconsin_disc.txt")
data = np.loadtxt(f, delimiter=",")
x_train = data[:, range(1, 10)]
y_train = data[:, 10]
for j in range(replication - 1):
x_train = np.vstack([x_train, data[:, range(1, 10)]])
y_train = np.hstack([y_train, data[:, 10]])
f = open(path + "breast_cancer_wisconsin_disc_test.txt")
data = np.loadtxt(f, delimiter=",")
x_test = data[:, range(1, 10)]
y_test = data[:, 10]
for j in range(replication - 1):
x_test = np.vstack([x_test, data[:, range(1, 10)]])
y_test = np.hstack([y_test, data[:, 10]])
return x_train, y_train, x_test, y_test
示例9: iris
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import vstack [as 别名]
def iris(replication=2):
f = open(path + "iris.txt")
data = np.loadtxt(f, delimiter=",", dtype=np.string0)
x_train = np.array(data[:, range(0, 4)], dtype=np.float)
y_train = data[:, 4]
for j in range(replication - 1):
x_train = np.vstack([x_train, data[:, range(0, 4)]])
y_train = np.hstack([y_train, data[:, 4]])
x_train = np.array(x_train, dtype=np.float)
f = open(path + "iris_test.txt")
data = np.loadtxt(f, delimiter=",", dtype=np.string0)
x_test = np.array(data[:, range(0, 4)], dtype=np.float)
y_test = data[:, 4]
for j in range(replication - 1):
x_test = np.vstack([x_test, data[:, range(0, 4)]])
y_test = np.hstack([y_test, data[:, 4]])
x_test = np.array(x_test, dtype=np.float)
return x_train, y_train, x_test, y_test
示例10: regression_data
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import vstack [as 别名]
def regression_data():
f = open(path + "regression_data1.txt")
data = np.loadtxt(f, delimiter=",")
x1 = np.insert(data[:, 0].reshape(len(data), 1), 0, np.ones(len(data)), axis=1)
y1 = data[:, 1]
f = open(path + "regression_data2.txt")
data = np.loadtxt(f, delimiter=",")
x2 = np.insert(data[:, 0].reshape(len(data), 1), 0, np.ones(len(data)), axis=1)
y2 = data[:, 1]
x1 = np.vstack((x1, x2))
y1 = np.hstack((y1, y2))
f = open(path + "regression_data_test1.txt")
data = np.loadtxt(f, delimiter=",")
x1_test = np.insert(data[:, 0].reshape(len(data), 1), 0, np.ones(len(data)), axis=1)
y1_test = data[:, 1]
f = open(path + "regression_data_test2.txt")
data = np.loadtxt(f, delimiter=",")
x2_test = np.insert(data[:, 0].reshape(len(data), 1), 0, np.ones(len(data)), axis=1)
y2_test = data[:, 1]
x1_test = np.vstack((x1_test, x2_test))
y1_test = np.hstack((y1_test, y2_test))
return x1, y1, x1_test, y1_test
示例11: ex3
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import vstack [as 别名]
def ex3(replication=2):
f = open(path + "ex3.txt")
train_data = np.loadtxt(f, delimiter=",")
f = open(path + "ex3_test.txt")
test_data = np.loadtxt(f, delimiter=",")
x_train = np.insert(train_data[:, (0, 1)], 0, np.ones(len(train_data)), axis=1)
y_train = train_data[:, 2]
x_test = np.insert(test_data[:, (0, 1)], 0, np.ones(len(test_data)), axis=1)
y_test = test_data[:, 2]
for i in range(replication - 1):
x_train = np.vstack((x_train, np.insert(train_data[:, (0, 1)], 0, np.ones(len(train_data)), axis=1)))
y_train = np.hstack((y_train, train_data[:, 2]))
x_test = np.vstack((x_test, np.insert(test_data[:, (0, 1)], 0, np.ones(len(test_data)), axis=1)))
y_test = np.hstack((y_test, test_data[:, 2]))
return x_train, y_train, x_test, y_test
示例12: getGFKDim
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import vstack [as 别名]
def getGFKDim(Xs, Xt):
Pss = PCA().fit(Xs).components_.T
Pts = PCA().fit(Xt).components_.T
Psstt = PCA().fit(np.vstack((Xs, Xt))).components_.T
DIM = round(Xs.shape[1]*0.5)
res = -1
for d in range(1, DIM+1):
Ps = Pss[:, :d]
Pt = Pts[:, :d]
Pst = Psstt[:, :d]
alpha1 = getAngle(Ps, Pst, d)
alpha2 = getAngle(Pt, Pst, d)
D = (alpha1 + alpha2) * 0.5
check = [round(D[1, dd]*100) == 100 for dd in range(d)]
if True in check:
res = list(map(lambda i: i == True, check)).index(True)
return res
示例13: fit
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import vstack [as 别名]
def fit(self, Xs, Xt):
'''
Transform Xs and Xt
:param Xs: ns * n_feature, source feature
:param Xt: nt * n_feature, target feature
:return: Xs_new and Xt_new after TCA
'''
X = np.hstack((Xs.T, Xt.T))
X /= np.linalg.norm(X, axis=0)
m, n = X.shape
ns, nt = len(Xs), len(Xt)
e = np.vstack((1 / ns * np.ones((ns, 1)), -1 / nt * np.ones((nt, 1))))
M = e * e.T
M = M / np.linalg.norm(M, 'fro')
H = np.eye(n) - 1 / n * np.ones((n, n))
K = kernel(self.kernel_type, X, None, gamma=self.gamma)
n_eye = m if self.kernel_type == 'primal' else n
a, b = np.linalg.multi_dot([K, M, K.T]) + self.lamb * np.eye(n_eye), np.linalg.multi_dot([K, H, K.T])
w, V = scipy.linalg.eig(a, b)
ind = np.argsort(w)
A = V[:, ind[:self.dim]]
Z = np.dot(A.T, K)
Z /= np.linalg.norm(Z, axis=0)
Xs_new, Xt_new = Z[:, :ns].T, Z[:, ns:].T
return Xs_new, Xt_new
示例14: proxy_a_distance
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import vstack [as 别名]
def proxy_a_distance(source_X, target_X):
"""
Compute the Proxy-A-Distance of a source/target representation
"""
nb_source = np.shape(source_X)[0]
nb_target = np.shape(target_X)[0]
train_X = np.vstack((source_X, target_X))
train_Y = np.hstack((np.zeros(nb_source, dtype=int),
np.ones(nb_target, dtype=int)))
clf = svm.LinearSVC(random_state=0)
clf.fit(train_X, train_Y)
y_pred = clf.predict(train_X)
error = metrics.mean_absolute_error(train_Y, y_pred)
dist = 2 * (1 - 2 * error)
return dist
示例15: scheduleRevisit
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import vstack [as 别名]
def scheduleRevisit(self, sInd, smin, det, pInds):
"""A Helper Method for scheduling revisits after observation detection
Args:
sInd - sInd of the star just detected
smin - minimum separation of the planet to star of planet just detected
det -
pInds - Indices of planets around target star
Return:
updates self.starRevisit attribute
"""
TK = self.TimeKeeping
t_rev = TK.currentTimeNorm.copy() + self.revisit_wait[sInd]
# finally, populate the revisit list (NOTE: sInd becomes a float)
revisit = np.array([sInd, t_rev.to('day').value])
if self.starRevisit.size == 0:#If starRevisit has nothing in it
self.starRevisit = np.array([revisit])#initialize sterRevisit
else:
revInd = np.where(self.starRevisit[:,0] == sInd)[0]#indices of the first column of the starRevisit list containing sInd
if revInd.size == 0:
self.starRevisit = np.vstack((self.starRevisit, revisit))
else:
self.starRevisit[revInd,1] = revisit[1]#over