本文整理汇总了Python中numpy.var方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.var方法的具体用法?Python numpy.var怎么用?Python numpy.var使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy
的用法示例。
在下文中一共展示了numpy.var方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _lapulaseDetection
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import var [as 别名]
def _lapulaseDetection(self, imgName):
"""
:param strdir: 文件所在的目录
:param name: 文件名称
:return: 检测模糊后的分数
"""
# step1: 预处理
img2gray, reImg = self.preImgOps(imgName)
# step2: laplacian算子 获取评分
resLap = cv2.Laplacian(img2gray, cv2.CV_64F)
score = resLap.var()
print("Laplacian %s score of given image is %s", str(score))
# strp3: 绘制图片并保存 不应该写在这里 抽象出来 这是共有的部分
newImg = self._drawImgFonts(reImg, str(score))
newDir = self.strDir + "/_lapulaseDetection_/"
if not os.path.exists(newDir):
os.makedirs(newDir)
newPath = newDir + imgName
# 显示
cv2.imwrite(newPath, newImg) # 保存图片
cv2.imshow(imgName, newImg)
cv2.waitKey(0)
# step3: 返回分数
return score
示例2: standard_variance
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import var [as 别名]
def standard_variance(data, period):
"""
Standard Variance.
Formula:
(Ct - AVGt)^2 / N
"""
check_for_period_error(data, period)
sv = list(map(
lambda idx:
np.var(data[idx+1-period:idx+1], ddof=1),
range(period-1, len(data))
))
sv = fill_for_noncomputable_vals(data, sv)
return sv
示例3: test_runningmeanstd
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import var [as 别名]
def test_runningmeanstd():
for (x1, x2, x3) in [
(np.random.randn(3), np.random.randn(4), np.random.randn(5)),
(np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),
]:
rms = RunningMeanStd(epsilon=0.0, shape=x1.shape[1:])
x = np.concatenate([x1, x2, x3], axis=0)
ms1 = [x.mean(axis=0), x.var(axis=0)]
rms.update(x1)
rms.update(x2)
rms.update(x3)
ms2 = [rms.mean, rms.var]
assert np.allclose(ms1, ms2)
示例4: test_tf_runningmeanstd
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import var [as 别名]
def test_tf_runningmeanstd():
for (x1, x2, x3) in [
(np.random.randn(3), np.random.randn(4), np.random.randn(5)),
(np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),
]:
rms = TfRunningMeanStd(epsilon=0.0, shape=x1.shape[1:], scope='running_mean_std' + str(np.random.randint(0, 128)))
x = np.concatenate([x1, x2, x3], axis=0)
ms1 = [x.mean(axis=0), x.var(axis=0)]
rms.update(x1)
rms.update(x2)
rms.update(x3)
ms2 = [rms.mean, rms.var]
np.testing.assert_allclose(ms1, ms2)
示例5: _Variance
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import var [as 别名]
def _Variance(self, imgName):
"""
灰度方差乘积
:param imgName:
:return:
"""
# step 1 图像的预处理
img2gray, reImg = self.preImgOps(imgName)
f = self._imageToMatrix(img2gray)
# strp3: 绘制图片并保存 不应该写在这里 抽象出来 这是共有的部分
score = np.var(f)
newImg = self._drawImgFonts(reImg, str(score))
newDir = self.strDir + "/_Variance_/"
if not os.path.exists(newDir):
os.makedirs(newDir)
newPath = newDir + imgName
cv2.imwrite(newPath, newImg) # 保存图片
cv2.imshow(imgName, newImg)
cv2.waitKey(0)
return score
示例6: _signal_changepoints_cost_mean
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import var [as 别名]
def _signal_changepoints_cost_mean(signal):
"""Cost function for a normally distributed signal with a changing mean."""
i_variance_2 = 1 / (np.var(signal) ** 2)
cmm = [0.0]
cmm.extend(np.cumsum(signal))
cmm2 = [0.0]
cmm2.extend(np.cumsum(np.abs(signal)))
def cost(start, end):
cmm2_diff = cmm2[end] - cmm2[start]
cmm_diff = pow(cmm[end] - cmm[start], 2)
i_diff = end - start
diff = cmm2_diff - cmm_diff
return (diff / i_diff) * i_variance_2
return cost
示例7: map_fit
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import var [as 别名]
def map_fit(interface, state, label, inp):
"""
Function counts occurrences of feature values for every row in given data chunk. For continuous features it returns
number of values and it calculates mean and variance for every feature.
For discrete features it counts occurrences of labels and values for every feature. It returns occurrences of pairs:
label, feature index, feature values.
"""
import numpy as np
combiner = {} # combiner used for joining of intermediate pairs
out = interface.output(0) # all outputted pairs have the same output label
for row in inp: # for every row in data chunk
row = row.strip().split(state["delimiter"]) # split row
if len(row) > 1: # check if row is empty
for i, j in enumerate(state["X_indices"]): # for defined features
if row[j] not in state["missing_vals"]: # check missing values
# creates a pair - label, feature index
pair = row[state["y_index"]] + state["delimiter"] + str(j)
if state["X_meta"][i] == "c": # continuous features
if pair in combiner:
# convert to float and store value
combiner[pair].append(np.float32(row[j]))
else:
combiner[pair] = [np.float32(row[j])]
else: # discrete features
# add feature value to pair
pair += state["delimiter"] + row[j]
# increase counts of current pair
combiner[pair] = combiner.get(pair, 0) + 1
# increase label counts
combiner[row[state["y_index"]]] = combiner.get(row[state["y_index"]], 0) + 1
for k, v in combiner.iteritems(): # all pairs in combiner are output
if len(k.split(state["delimiter"])) == 2: # continous features
# number of elements, partial mean and variance
out.add(k, (np.size(v), np.mean(v, dtype=np.float32), np.var(v, dtype=np.float32)))
else: # discrete features and labels
out.add(k, v)
示例8: testComputeMovingVars
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import var [as 别名]
def testComputeMovingVars(self):
height, width = 3, 3
with self.test_session() as sess:
image_shape = (10, height, width, 3)
image_values = np.random.rand(*image_shape)
expected_mean = np.mean(image_values, axis=(0, 1, 2))
expected_var = np.var(image_values, axis=(0, 1, 2))
images = tf.constant(image_values, shape=image_shape, dtype=tf.float32)
output = ops.batch_norm(images, decay=0.1)
update_ops = tf.get_collection(ops.UPDATE_OPS_COLLECTION)
with tf.control_dependencies(update_ops):
output = tf.identity(output)
# Initialize all variables
sess.run(tf.global_variables_initializer())
moving_mean = variables.get_variables('BatchNorm/moving_mean')[0]
moving_variance = variables.get_variables('BatchNorm/moving_variance')[0]
mean, variance = sess.run([moving_mean, moving_variance])
# After initialization moving_mean == 0 and moving_variance == 1.
self.assertAllClose(mean, [0] * 3)
self.assertAllClose(variance, [1] * 3)
for _ in range(10):
sess.run([output])
mean = moving_mean.eval()
variance = moving_variance.eval()
# After 10 updates with decay 0.1 moving_mean == expected_mean and
# moving_variance == expected_var.
self.assertAllClose(mean, expected_mean)
self.assertAllClose(variance, expected_var)
示例9: testEvalMovingVars
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import var [as 别名]
def testEvalMovingVars(self):
height, width = 3, 3
with self.test_session() as sess:
image_shape = (10, height, width, 3)
image_values = np.random.rand(*image_shape)
expected_mean = np.mean(image_values, axis=(0, 1, 2))
expected_var = np.var(image_values, axis=(0, 1, 2))
images = tf.constant(image_values, shape=image_shape, dtype=tf.float32)
output = ops.batch_norm(images, decay=0.1, is_training=False)
update_ops = tf.get_collection(ops.UPDATE_OPS_COLLECTION)
with tf.control_dependencies(update_ops):
output = tf.identity(output)
# Initialize all variables
sess.run(tf.global_variables_initializer())
moving_mean = variables.get_variables('BatchNorm/moving_mean')[0]
moving_variance = variables.get_variables('BatchNorm/moving_variance')[0]
mean, variance = sess.run([moving_mean, moving_variance])
# After initialization moving_mean == 0 and moving_variance == 1.
self.assertAllClose(mean, [0] * 3)
self.assertAllClose(variance, [1] * 3)
# Simulate assigment from saver restore.
init_assigns = [tf.assign(moving_mean, expected_mean),
tf.assign(moving_variance, expected_var)]
sess.run(init_assigns)
for _ in range(10):
sess.run([output], {images: np.random.rand(*image_shape)})
mean = moving_mean.eval()
variance = moving_variance.eval()
# Although we feed different images, the moving_mean and moving_variance
# shouldn't change.
self.assertAllClose(mean, expected_mean)
self.assertAllClose(variance, expected_var)
示例10: testReuseVars
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import var [as 别名]
def testReuseVars(self):
height, width = 3, 3
with self.test_session() as sess:
image_shape = (10, height, width, 3)
image_values = np.random.rand(*image_shape)
expected_mean = np.mean(image_values, axis=(0, 1, 2))
expected_var = np.var(image_values, axis=(0, 1, 2))
images = tf.constant(image_values, shape=image_shape, dtype=tf.float32)
output = ops.batch_norm(images, decay=0.1, is_training=False)
update_ops = tf.get_collection(ops.UPDATE_OPS_COLLECTION)
with tf.control_dependencies(update_ops):
output = tf.identity(output)
# Initialize all variables
sess.run(tf.global_variables_initializer())
moving_mean = variables.get_variables('BatchNorm/moving_mean')[0]
moving_variance = variables.get_variables('BatchNorm/moving_variance')[0]
mean, variance = sess.run([moving_mean, moving_variance])
# After initialization moving_mean == 0 and moving_variance == 1.
self.assertAllClose(mean, [0] * 3)
self.assertAllClose(variance, [1] * 3)
# Simulate assigment from saver restore.
init_assigns = [tf.assign(moving_mean, expected_mean),
tf.assign(moving_variance, expected_var)]
sess.run(init_assigns)
for _ in range(10):
sess.run([output], {images: np.random.rand(*image_shape)})
mean = moving_mean.eval()
variance = moving_variance.eval()
# Although we feed different images, the moving_mean and moving_variance
# shouldn't change.
self.assertAllClose(mean, expected_mean)
self.assertAllClose(variance, expected_var)
示例11: _assert_variance_in_range
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import var [as 别名]
def _assert_variance_in_range(self, initializer, shape, variance,
tol=1e-2):
with tf.Graph().as_default() as g:
with self.test_session(graph=g) as sess:
var = tf.get_variable(
name='test',
shape=shape,
dtype=tf.float32,
initializer=initializer)
sess.run(tf.global_variables_initializer())
values = sess.run(var)
self.assertAllClose(np.var(values), variance, tol, tol)
示例12: var
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import var [as 别名]
def var(self):
return 1
示例13: std
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import var [as 别名]
def std(self):
return np.sqrt(self.var)
示例14: test_running_stat
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import var [as 别名]
def test_running_stat():
for shp in ((), (3,), (3, 4)):
li = []
rs = RunningStat(shp)
for _ in range(5):
val = np.random.randn(*shp)
rs.push(val)
li.append(val)
m = np.mean(li, axis=0)
assert np.allclose(rs.mean, m)
v = np.square(m) if (len(li) == 1) else np.var(li, ddof=1, axis=0)
assert np.allclose(rs.var, v)
示例15: var
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import var [as 别名]
def var(self):
return self._S/(self._n - 1) if self._n > 1 else np.square(self._M)