当前位置: 首页>>代码示例>>Python>>正文


Python testing.assert_array_almost_equal方法代码示例

本文整理汇总了Python中numpy.testing.assert_array_almost_equal方法的典型用法代码示例。如果您正苦于以下问题:Python testing.assert_array_almost_equal方法的具体用法?Python testing.assert_array_almost_equal怎么用?Python testing.assert_array_almost_equal使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy.testing的用法示例。


在下文中一共展示了testing.assert_array_almost_equal方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_binary_crossentropy

# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_array_almost_equal [as 别名]
def test_binary_crossentropy(self):
        y_pred = tf.constant([[0.5, 0., 1.], [2., 0., -1.]])
        y_pred_2 = tf.constant([[0.5, 2., 1.], [2., 2., -1.]])
        y_true = tf.constant([[1., MAGIC_NUMBER, 1.], [1., MAGIC_NUMBER, 0.]])
        y_pred_sigmoid = tf.nn.sigmoid(y_pred)
        y_pred_2_sigmoid = tf.nn.sigmoid(y_pred_2)

        # Truth with Magic number is wrong
        npt.assert_array_almost_equal(binary_crossentropy(y_true, y_pred_sigmoid).numpy(),
                                      binary_crossentropy(y_true, y_pred, from_logits=True).numpy(), decimal=3)
        # make sure neural network prediction won't matter for magic number term
        npt.assert_array_almost_equal(
            binary_crossentropy(y_true, y_pred_2, from_logits=True).numpy(),
            binary_crossentropy(y_true, y_pred, from_logits=True).numpy()
            , decimal=3)
        npt.assert_array_almost_equal(binary_crossentropy(y_true, y_pred_sigmoid).numpy(),
                                      binary_crossentropy(y_true, y_pred_2_sigmoid).numpy(), decimal=3) 
开发者ID:henrysky,项目名称:astroNN,代码行数:19,代码来源:test_loss_func.py

示例2: test_logsol

# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_array_almost_equal [as 别名]
def test_logsol(self):
        # Test conversion tools related to log solar luminosity
        from astroNN.gaia import fakemag_to_logsol, absmag_to_logsol, logsol_to_absmag, logsol_to_fakemag
        self.assertEqual(logsol_to_fakemag(fakemag_to_logsol(100.)), 100.)
        npt.assert_array_equal(logsol_to_fakemag(fakemag_to_logsol([100., 100.])), [100., 100.])
        npt.assert_array_equal(logsol_to_fakemag(fakemag_to_logsol(np.array([100, 100, 100]))), [100., 100., 100.])
        self.assertEqual(fakemag_to_logsol(MAGIC_NUMBER), MAGIC_NUMBER)
        self.assertEqual(logsol_to_fakemag(fakemag_to_logsol(MAGIC_NUMBER)), MAGIC_NUMBER)
        self.assertEqual(np.any(fakemag_to_logsol([MAGIC_NUMBER, 1000]) == MAGIC_NUMBER), True)

        self.assertEqual(logsol_to_absmag(absmag_to_logsol(99.)), 99.)
        self.assertAlmostEqual(logsol_to_absmag(absmag_to_logsol(-99.)), -99.)
        npt.assert_array_equal(logsol_to_absmag(absmag_to_logsol([99., 99.])), [99., 99.])
        npt.assert_array_almost_equal(logsol_to_absmag(absmag_to_logsol([-99., -99.])), [-99., -99.])
        npt.assert_array_almost_equal(logsol_to_absmag(absmag_to_logsol(np.array([99., 99., 99.]))), [99., 99., 99.])
        self.assertEqual(absmag_to_logsol(MAGIC_NUMBER), MAGIC_NUMBER)
        self.assertEqual(logsol_to_absmag(absmag_to_logsol(MAGIC_NUMBER)), MAGIC_NUMBER)
        self.assertEqual(np.any(absmag_to_logsol([MAGIC_NUMBER, 1000]) == MAGIC_NUMBER), True) 
开发者ID:henrysky,项目名称:astroNN,代码行数:20,代码来源:test_gaia_tools.py

示例3: test_regularizator

# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_array_almost_equal [as 别名]
def test_regularizator(self):
        # make sure its the same as tensorflow
        x = np.array([-1., 2., 3., 4.])
        reg = 0.2

        astroNN_x = l1(x, l1=reg)
        astroNN_x_2 = l2(x, l2=reg)

        with tf.device("/cpu:0"), context.eager_mode():
            l1_reg = tf.keras.regularizers.l1(l=reg)
            l2_reg = tf.keras.regularizers.l2(l=reg)
            tf_x = l1_reg(tf.convert_to_tensor(x))
            tf_x_2 = l2_reg(tf.convert_to_tensor(x))

            npt.assert_array_almost_equal(tf_x.numpy(), astroNN_x)
            npt.assert_array_almost_equal(tf_x_2.numpy(), astroNN_x_2) 
开发者ID:henrysky,项目名称:astroNN,代码行数:18,代码来源:test_numpy_tools.py

示例4: test_ODEbadprecision

# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_array_almost_equal [as 别名]
def test_ODEbadprecision(self):  # make sure float32 is not enough for very precise integration
        t = tf.constant(np.linspace(0, 10, 1000), dtype=tf.float32)
        # initial condition
        true_y0 = tf.constant([0., 5.], dtype=tf.float32)

        true_func = lambda y, t: np.sin(5*t)
        ode_func = lambda y, t: tf.cast(tf.stack([5*tf.cos(5*t), -25*tf.sin(5*t)]), tf.float32)
        true_y = odeint(ode_func, true_y0, t, method='dop853', precision=tf.float32)
        self.assertRaises(AssertionError, npt.assert_array_almost_equal, true_y.numpy()[:, 0], true_func(true_y0, t))

        true_y0_pretend_multidims = [[0., 5.]]  # to introduce a mix of list, np array, tensor to make sure no issue
        true_y_pretend_multidims = odeint(ode_func, true_y0_pretend_multidims, t, method='dop853', precision=tf.float32)

        # assert equal pretendinging multidim or not
        np.testing.assert_array_almost_equal(true_y_pretend_multidims[0], true_y)

        true_y0_multidims = tf.constant([[1., 2.], [0., 5.]], dtype=tf.float32)
        t = np.linspace(0, 10, 1000)
        true_y_multidims = odeint(ode_func, true_y0_multidims, t, method='dop853', precision=tf.float32)

        # assert equal in multidim or not
        np.testing.assert_array_almost_equal(true_y_multidims[1], true_y) 
开发者ID:henrysky,项目名称:astroNN,代码行数:24,代码来源:test_neuralODE.py

示例5: test_attention_softmax

# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_array_almost_equal [as 别名]
def test_attention_softmax(self):
        vector_in = tf.constant([
            [1., 2., 1., 2.0],
            [.3, .2, .9, .3]
        ])
        padding = tf.constant([
            [1., 1., 1., 0.],
            [1., 1., 0., 0.]
        ])

        result = self.sess.run(attention_softmax(vector_in, padding))
        reference_value = np.array([
            [0.21194156, 0.57611692, 0.21194156, 0.],
            [0.52497919, 0.47502081, 0., 0.]
        ])

        npt.assert_array_almost_equal(result, reference_value) 
开发者ID:UKPLab,项目名称:iwcs2017-answer-selection,代码行数:19,代码来源:test_pooling_helper.py

示例6: test__impute

# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_array_almost_equal [as 别名]
def test__impute():
    expected = numpy.array([
         3.11279729,   3.60634338,   4.04602788,   4.04602788,
         4.71008116,   6.14010906,   6.97841457,   2.        ,
         4.2       ,   4.62      ,   5.57      ,   5.66      ,
         5.86      ,   6.65      ,   6.78      ,   6.79      ,
         7.5       ,   7.5       ,   7.5       ,   8.63      ,
         8.71      ,   8.99      ,   9.85      ,  10.82      ,
        11.25      ,  11.25      ,  12.2       ,  14.92      ,
        16.77      ,  17.81      ,  19.16      ,  19.19      ,
        19.64      ,  20.18      ,  22.97
    ])
    df = load_advanced_data()
    df = ros._impute(df, 'conc', 'censored', numpy.log, numpy.exp)
    result = df['final'].values
    npt.assert_array_almost_equal(result, expected) 
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:18,代码来源:test_ros.py

示例7: test__do_ros

# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_array_almost_equal [as 别名]
def test__do_ros():
    expected = numpy.array([
         3.11279729,   3.60634338,   4.04602788,   4.04602788,
         4.71008116,   6.14010906,   6.97841457,   2.        ,
         4.2       ,   4.62      ,   5.57      ,   5.66      ,
         5.86      ,   6.65      ,   6.78      ,   6.79      ,
         7.5       ,   7.5       ,   7.5       ,   8.63      ,
         8.71      ,   8.99      ,   9.85      ,  10.82      ,
        11.25      ,  11.25      ,  12.2       ,  14.92      ,
        16.77      ,  17.81      ,  19.16      ,  19.19      ,
        19.64      ,  20.18      ,  22.97
    ])

    df = load_basic_data()
    df = ros._do_ros(df, 'conc', 'censored', numpy.log, numpy.exp)
    result = df['final'].values
    npt.assert_array_almost_equal(result, expected) 
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:19,代码来源:test_ros.py

示例8: test_feasibility_problem

# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_array_almost_equal [as 别名]
def test_feasibility_problem(self):

        # Solve problem
        res = self.model.solve()

        # Assert close
        nptest.assert_array_almost_equal(
            res.x,
            np.array([-0.0656074, 1.04194398, 0.4756959, -1.64036689,
                      -0.34180168, -0.81696303, -1.06389178, 0.44944554,
                      -0.44829675, -1.01289944, -0.12513655, 0.02267293,
                      -1.15206474, 1.06817424, 1.18143313, 0.01690332,
                      -0.11373645, -0.48115767,  0.25373436, 0.81369707,
                      0.18883475, 0.47000419, -0.24932451, 0.09298623,
                      1.88381076, 0.77536814, -1.35971433, 0.51511176,
                      0.03317466, 0.90226419]), decimal=3)
        nptest.assert_array_almost_equal(res.y, np.zeros(self.m), decimal=3)
        nptest.assert_array_almost_equal(res.info.obj_val, 0., decimal=3) 
开发者ID:oxfordcontrol,项目名称:osqp-python,代码行数:20,代码来源:feasibility_test.py

示例9: test_update_P_allind

# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_array_almost_equal [as 别名]
def test_update_P_allind(self):
        import mat_emosqp

        # Update matrix P
        Px = self.P_new.data
        mat_emosqp.update_P(Px, None, 0)
        x, y, _, _, _ = mat_emosqp.solve()

        # Assert close
        nptest.assert_array_almost_equal(x, np.array([0., 5.]), decimal=5)
        nptest.assert_array_almost_equal(
            y, np.array([0., 0., 3., 0., 0.]), decimal=5)

        # Update matrix P to the original value
        Px_idx = np.arange(self.P.nnz)
        mat_emosqp.update_P(Px, Px_idx, len(Px)) 
开发者ID:oxfordcontrol,项目名称:osqp-python,代码行数:18,代码来源:codegen_matrices_test.py

示例10: test_update_A

# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_array_almost_equal [as 别名]
def test_update_A(self):
        import mat_emosqp

        # Update matrix A
        Ax = self.A_new.data
        Ax_idx = np.arange(self.A_new.nnz)
        mat_emosqp.update_A(Ax, Ax_idx, len(Ax))

        # Solve problem
        x, y, _, _, _ = mat_emosqp.solve()

        # Assert close
        nptest.assert_array_almost_equal(x,
            np.array([0.15765766, 7.34234234]), decimal=5)
        nptest.assert_array_almost_equal(
            y, np.array([0., 0., 2.36711712, 0., 0.]), decimal=5)

        # Update matrix A to the original value
        Ax = self.A.data
        Ax_idx = np.arange(self.A.nnz)
        mat_emosqp.update_A(Ax, Ax_idx, len(Ax)) 
开发者ID:oxfordcontrol,项目名称:osqp-python,代码行数:23,代码来源:codegen_matrices_test.py

示例11: test_update_A_allind

# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_array_almost_equal [as 别名]
def test_update_A_allind(self):
        import mat_emosqp

        # Update matrix A
        Ax = self.A_new.data
        mat_emosqp.update_A(Ax, None, 0)
        x, y, _, _, _ = mat_emosqp.solve()

        # Assert close
        nptest.assert_array_almost_equal(x,
            np.array([0.15765766, 7.34234234]), decimal=5)
        nptest.assert_array_almost_equal(
            y, np.array([0., 0., 2.36711712, 0., 0.]), decimal=5)

        # Update matrix A to the original value
        Ax = self.A.data
        Ax_idx = np.arange(self.A.nnz)
        mat_emosqp.update_A(Ax, Ax_idx, len(Ax)) 
开发者ID:oxfordcontrol,项目名称:osqp-python,代码行数:20,代码来源:codegen_matrices_test.py

示例12: test_update_P_A_indP_indA

# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_array_almost_equal [as 别名]
def test_update_P_A_indP_indA(self):
        import mat_emosqp

        # Update matrices P and A
        Px = self.P_new.data
        Px_idx = np.arange(self.P_new.nnz)
        Ax = self.A_new.data
        Ax_idx = np.arange(self.A_new.nnz)
        mat_emosqp.update_P_A(Px, Px_idx, len(Px), Ax, Ax_idx, len(Ax))

        # Solve problem
        x, y, _, _, _ = mat_emosqp.solve()

        # Assert close
        nptest.assert_array_almost_equal(x, np.array([4.25, 3.25]), decimal=5)
        nptest.assert_array_almost_equal(
            y, np.array([0., 0., 3.625, 0., 0.]), decimal=5)

        # Update matrices P and A to the original values
        Px = self.P.data
        Ax = self.A.data
        mat_emosqp.update_P_A(Px, None, 0, Ax, None, 0) 
开发者ID:oxfordcontrol,项目名称:osqp-python,代码行数:24,代码来源:codegen_matrices_test.py

示例13: test_update_P_A_indP

# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_array_almost_equal [as 别名]
def test_update_P_A_indP(self):
        import mat_emosqp

        # Update matrices P and A
        Px = self.P_new.data
        Px_idx = np.arange(self.P_new.nnz)
        Ax = self.A_new.data
        mat_emosqp.update_P_A(Px, Px_idx, len(Px), Ax, None, 0)
        x, y, _, _, _ = mat_emosqp.solve()

        # Assert close
        nptest.assert_array_almost_equal(x, np.array([4.25, 3.25]), decimal=5)
        nptest.assert_array_almost_equal(
            y, np.array([0., 0., 3.625, 0., 0.]), decimal=5)

        # Update matrices P and A to the original values
        Px = self.P.data
        Ax = self.A.data
        mat_emosqp.update_P_A(Px, None, 0, Ax, None, 0) 
开发者ID:oxfordcontrol,项目名称:osqp-python,代码行数:21,代码来源:codegen_matrices_test.py

示例14: test_update_P_A_allind

# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_array_almost_equal [as 别名]
def test_update_P_A_allind(self):
        import mat_emosqp

        # Update matrices P and A
        Px = self.P_new.data
        Ax = self.A_new.data
        mat_emosqp.update_P_A(Px, None, 0, Ax, None, 0)
        x, y, _, _, _ = mat_emosqp.solve()

        # Assert close
        nptest.assert_array_almost_equal(x, np.array([4.25, 3.25]), decimal=5)
        nptest.assert_array_almost_equal(y, np.array([0., 0., 3.625, 0., 0.]), decimal=5)

        # Update matrices P and A to the original values
        Px = self.P.data
        Ax = self.A.data
        mat_emosqp.update_P_A(Px, None, 0, Ax, None, 0) 
开发者ID:oxfordcontrol,项目名称:osqp-python,代码行数:19,代码来源:codegen_matrices_test.py

示例15: test_unconstrained_problem

# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_array_almost_equal [as 别名]
def test_unconstrained_problem(self):

        # Solve problem
        res = self.model.solve()

        # Assert close
        nptest.assert_array_almost_equal(
            res.x, np.array([
                -0.61981415, -0.06174194, 0.83824061, -0.0595013, -0.17810828,
                2.90550031, -1.8901713, -1.91191741, -3.73603446, 1.7530356,
                -1.67018181, 3.42221944, 0.61263403, -0.45838347, -0.13194248,
                2.95744794, 5.2902277, -1.42836238, -8.55123842, -0.79093815,
                0.43418189, -0.69323554, 1.15967924, -0.47821898, 3.6108927,
                0.03404309, 0.16322926, -2.17974795, 0.32458796, -1.97553574]))
        nptest.assert_array_almost_equal(res.y, np.array([]))
        nptest.assert_array_almost_equal(res.info.obj_val, -35.020288603855825) 
开发者ID:oxfordcontrol,项目名称:osqp-python,代码行数:18,代码来源:unconstrained_test.py


注:本文中的numpy.testing.assert_array_almost_equal方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。