本文整理汇总了Python中numpy.testing.assert_方法的典型用法代码示例。如果您正苦于以下问题:Python testing.assert_方法的具体用法?Python testing.assert_怎么用?Python testing.assert_使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy.testing
的用法示例。
在下文中一共展示了testing.assert_方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: check_function
# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_ [as 别名]
def check_function(self, t):
tname = t.__doc__.split()[0]
if tname in ['t0', 't1', 's0', 's1']:
assert_(t(23) == b'2')
r = t('ab')
assert_(r == b'a', repr(r))
r = t(array('ab'))
assert_(r == b'a', repr(r))
r = t(array(77, 'u1'))
assert_(r == b'M', repr(r))
#assert_(_raises(ValueError, t, array([77,87])))
#assert_(_raises(ValueError, t, array(77)))
elif tname in ['ts', 'ss']:
assert_(t(23) == b'23 ', repr(t(23)))
assert_(t('123456789abcdef') == b'123456789a')
elif tname in ['t5', 's5']:
assert_(t(23) == b'23 ', repr(t(23)))
assert_(t('ab') == b'ab ', repr(t('ab')))
assert_(t('123456789abcdef') == b'12345')
else:
raise NotImplementedError
示例2: check_function
# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_ [as 别名]
def check_function(self, t):
tname = t.__doc__.split()[0]
if tname in ['t0', 't1', 's0', 's1']:
assert_(t(23) == asbytes('2'))
r = t('ab')
assert_(r == asbytes('a'), repr(r))
r = t(array('ab'))
assert_(r == asbytes('a'), repr(r))
r = t(array(77, 'u1'))
assert_(r == asbytes('M'), repr(r))
#assert_(_raises(ValueError, t, array([77,87])))
#assert_(_raises(ValueError, t, array(77)))
elif tname in ['ts', 'ss']:
assert_(t(23) == asbytes('23 '), repr(t(23)))
assert_(t('123456789abcdef') == asbytes('123456789a'))
elif tname in ['t5', 's5']:
assert_(t(23) == asbytes('23 '), repr(t(23)))
assert_(t('ab') == asbytes('ab '), repr(t('ab')))
assert_(t('123456789abcdef') == asbytes('12345'))
else:
raise NotImplementedError
示例3: test_predict_freq
# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_ [as 别名]
def test_predict_freq():
# test that predicted dates have same frequency
x = np.arange(1,36.)
# there's a bug in pandas up to 0.10.2 for YearBegin
#dates = date_range("1972-4-1", "2007-4-1", freq="AS-APR")
dates = pd.date_range("1972-4-30", "2006-4-30", freq="A-APR")
series = pd.Series(x, index=dates)
model = TimeSeriesModel(series)
#npt.assert_(model.data.freq == "AS-APR")
assert_equal(model._index.freqstr, "A-APR")
start, end, out_of_sample, _ = (
model._get_prediction_index("2006-4-30", "2016-4-30"))
predict_dates = model.data.predict_dates
#expected_dates = date_range("2006-12-31", "2016-12-31",
# freq="AS-APR")
expected_dates = pd.date_range("2006-4-30", "2016-4-30", freq="A-APR")
assert_equal(predict_dates, expected_dates)
#ptesting.assert_series_equal(predict_dates, expected_dates)
示例4: test_recursive_split
# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_ [as 别名]
def test_recursive_split():
keys = list(product('mf'))
data = OrderedDict(zip(keys, [1] * len(keys)))
res = _hierarchical_split(data, gap=0)
assert_(list(iterkeys(res)) == keys)
res[('m',)] = (0.0, 0.0, 0.5, 1.0)
res[('f',)] = (0.5, 0.0, 0.5, 1.0)
keys = list(product('mf', 'yao'))
data = OrderedDict(zip(keys, [1] * len(keys)))
res = _hierarchical_split(data, gap=0)
assert_(list(iterkeys(res)) == keys)
res[('m', 'y')] = (0.0, 0.0, 0.5, 1 / 3)
res[('m', 'a')] = (0.0, 1 / 3, 0.5, 1 / 3)
res[('m', 'o')] = (0.0, 2 / 3, 0.5, 1 / 3)
res[('f', 'y')] = (0.5, 0.0, 0.5, 1 / 3)
res[('f', 'a')] = (0.5, 1 / 3, 0.5, 1 / 3)
res[('f', 'o')] = (0.5, 2 / 3, 0.5, 1 / 3)
示例5: check_sample_mean
# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_ [as 别名]
def check_sample_mean(sm,v,n, popmean):
"""
from stats.stats.ttest_1samp(a, popmean):
Calculates the t-obtained for the independent samples T-test on ONE group
of scores a, given a population mean.
Returns: t-value, two-tailed prob
"""
## a = asarray(a)
## x = np.mean(a)
## v = np.var(a, ddof=1)
## n = len(a)
df = n-1
svar = ((n-1)*v) / float(df) # looks redundant
t = (sm-popmean)/np.sqrt(svar*(1.0/n))
prob = stats.betai(0.5*df,0.5,df/(df+t*t))
# return t,prob
npt.assert_(prob > 0.01, 'mean fail, t,prob = %f, %f, m,sm=%f,%f' % (t,prob,popmean,sm))
示例6: test_fit_csd
# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_ [as 别名]
def test_fit_csd():
fdata, fbval, fbvec = dpd.get_fnames('small_64D')
with nbtmp.InTemporaryDirectory() as tmpdir:
# Convert from npy to txt:
bvals = np.loadtxt(fbval)
bvecs = np.loadtxt(fbvec)
np.savetxt(op.join(tmpdir, 'bvals.txt'), bvals)
np.savetxt(op.join(tmpdir, 'bvecs.txt'), bvecs)
for sh_order in [4, 6]:
fname = csd.fit_csd(fdata, op.join(tmpdir, 'bvals.txt'),
op.join(tmpdir, 'bvecs.txt'),
out_dir=tmpdir, sh_order=sh_order)
npt.assert_(op.exists(fname))
sh_coeffs_img = nib.load(fname)
npt.assert_equal(sh_order,
calculate_max_order(sh_coeffs_img.shape[-1]))
示例7: test_register_dwi
# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_ [as 别名]
def test_register_dwi():
fdata, fbval, fbvec = dpd.get_fnames('small_64D')
with nbtmp.InTemporaryDirectory() as tmpdir:
# Use an abbreviated data-set:
img = nib.load(fdata)
data = img.get_fdata()[..., :10]
nib.save(nib.Nifti1Image(data, img.affine),
op.join(tmpdir, 'data.nii.gz'))
# Save a subset:
bvals = np.loadtxt(fbval)
bvecs = np.loadtxt(fbvec)
np.savetxt(op.join(tmpdir, 'bvals.txt'), bvals[:10])
np.savetxt(op.join(tmpdir, 'bvecs.txt'), bvecs[:10])
reg_file = register_dwi(op.join(tmpdir, 'data.nii.gz'),
op.join(tmpdir, 'bvals.txt'),
op.join(tmpdir, 'bvecs.txt'))
npt.assert_(op.exists(reg_file))
示例8: test_csd_tracking
# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_ [as 别名]
def test_csd_tracking():
for sh_order in [4, 8, 10]:
fname = fit_csd(fdata, fbval, fbvec,
response=((0.0015, 0.0003, 0.0003), 100),
sh_order=8, lambda_=1, tau=0.1, mask=None,
out_dir=tmpdir.name)
for directions in ["det", "prob"]:
sl = track(fname, directions,
odf_model="CSD",
max_angle=30.,
sphere=None,
seed_mask=None,
n_seeds=seeds,
stop_mask=None,
step_size=step_size,
min_length=min_length).streamlines
npt.assert_(len(sl[0]) >= step_size * min_length)
示例9: assert_startswith
# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_ [as 别名]
def assert_startswith(a, b):
# produces a better error message than assert_(a.startswith(b))
assert_equal(a[:len(b)], b)
示例10: test_data_subclassing
# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_ [as 别名]
def test_data_subclassing(self):
# Tests whether the subclass is kept.
x = np.arange(5)
m = [0, 0, 1, 0, 0]
xsub = SubArray(x)
xmsub = masked_array(xsub, mask=m)
assert_(isinstance(xmsub, MaskedArray))
assert_equal(xmsub._data, xsub)
assert_(isinstance(xmsub._data, SubArray))
示例11: test_maskedarray_subclassing
# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_ [as 别名]
def test_maskedarray_subclassing(self):
# Tests subclassing MaskedArray
(x, mx) = self.data
assert_(isinstance(mx._data, subarray))
示例12: test_masked_binary_operations
# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_ [as 别名]
def test_masked_binary_operations(self):
# Tests masked_binary_operation
(x, mx) = self.data
# Result should be a msubarray
assert_(isinstance(add(mx, mx), msubarray))
assert_(isinstance(add(mx, x), msubarray))
# Result should work
assert_equal(add(mx, x), mx+x)
assert_(isinstance(add(mx, mx)._data, subarray))
assert_(isinstance(add.outer(mx, mx), msubarray))
assert_(isinstance(hypot(mx, mx), msubarray))
assert_(isinstance(hypot(mx, x), msubarray))
示例13: test_masked_binary_operations2
# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_ [as 别名]
def test_masked_binary_operations2(self):
# Tests domained_masked_binary_operation
(x, mx) = self.data
xmx = masked_array(mx.data.__array__(), mask=mx.mask)
assert_(isinstance(divide(mx, mx), msubarray))
assert_(isinstance(divide(mx, x), msubarray))
assert_equal(divide(mx, mx), divide(xmx, xmx))
示例14: test_attributepropagation
# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_ [as 别名]
def test_attributepropagation(self):
x = array(arange(5), mask=[0]+[1]*4)
my = masked_array(subarray(x))
ym = msubarray(x)
#
z = (my+1)
assert_(isinstance(z, MaskedArray))
assert_(not isinstance(z, MSubArray))
assert_(isinstance(z._data, SubArray))
assert_equal(z._data.info, {})
#
z = (ym+1)
assert_(isinstance(z, MaskedArray))
assert_(isinstance(z, MSubArray))
assert_(isinstance(z._data, SubArray))
assert_(z._data.info['added'] > 0)
# Test that inplace methods from data get used (gh-4617)
ym += 1
assert_(isinstance(ym, MaskedArray))
assert_(isinstance(ym, MSubArray))
assert_(isinstance(ym._data, SubArray))
assert_(ym._data.info['iadded'] > 0)
#
ym._set_mask([1, 0, 0, 0, 1])
assert_equal(ym._mask, [1, 0, 0, 0, 1])
ym._series._set_mask([0, 0, 0, 0, 1])
assert_equal(ym._mask, [0, 0, 0, 0, 1])
#
xsub = subarray(x, info={'name':'x'})
mxsub = masked_array(xsub)
assert_(hasattr(mxsub, 'info'))
assert_equal(mxsub.info, xsub.info)
示例15: test_subclasspreservation
# 需要导入模块: from numpy import testing [as 别名]
# 或者: from numpy.testing import assert_ [as 别名]
def test_subclasspreservation(self):
# Checks that masked_array(...,subok=True) preserves the class.
x = np.arange(5)
m = [0, 0, 1, 0, 0]
xinfo = [(i, j) for (i, j) in zip(x, m)]
xsub = MSubArray(x, mask=m, info={'xsub':xinfo})
#
mxsub = masked_array(xsub, subok=False)
assert_(not isinstance(mxsub, MSubArray))
assert_(isinstance(mxsub, MaskedArray))
assert_equal(mxsub._mask, m)
#
mxsub = asarray(xsub)
assert_(not isinstance(mxsub, MSubArray))
assert_(isinstance(mxsub, MaskedArray))
assert_equal(mxsub._mask, m)
#
mxsub = masked_array(xsub, subok=True)
assert_(isinstance(mxsub, MSubArray))
assert_equal(mxsub.info, xsub.info)
assert_equal(mxsub._mask, xsub._mask)
#
mxsub = asanyarray(xsub)
assert_(isinstance(mxsub, MSubArray))
assert_equal(mxsub.info, xsub.info)
assert_equal(mxsub._mask, m)