本文整理汇总了Python中numpy.sum方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.sum方法的具体用法?Python numpy.sum怎么用?Python numpy.sum使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy
的用法示例。
在下文中一共展示了numpy.sum方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: add_intercept
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import sum [as 别名]
def add_intercept(self, X):
"""Add 1's to data as last features."""
# Data shape
N, D = X.shape
# Check if there's not already an intercept column
if np.any(np.sum(X, axis=0) == N):
# Report
print('Intercept is not the last feature. Swapping..')
# Find which column contains the intercept
intercept_index = np.argwhere(np.sum(X, axis=0) == N)
# Swap intercept to last
X = X[:, np.setdiff1d(np.arange(D), intercept_index)]
# Add intercept as last column
X = np.hstack((X, np.ones((N, 1))))
# Append column of 1's to data, and increment dimensionality
return X, D+1
示例2: find_match
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import sum [as 别名]
def find_match(self, pred, gt):
'''
Match component to balls.
'''
batch_size, n_frames_input, n_components, _ = pred.shape
diff = pred.reshape(batch_size, n_frames_input, n_components, 1, 2) - \
gt.reshape(batch_size, n_frames_input, 1, n_components, 2)
diff = np.sum(np.sum(diff ** 2, axis=-1), axis=1)
# Direct indices
indices = np.argmin(diff, axis=2)
ambiguous = np.zeros(batch_size, dtype=np.int8)
for i in range(batch_size):
_, counts = np.unique(indices[i], return_counts=True)
if not np.all(counts == 1):
ambiguous[i] = 1
return indices, ambiguous
示例3: test_bounds
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import sum [as 别名]
def test_bounds(self):
"""
Test that out-of-bounds coordinates return NaN reddening, and that
in-bounds coordinates do not return NaN reddening.
"""
for mode in (['random_sample', 'random_sample_per_pix',
'median', 'samples', 'mean']):
# Draw random coordinates, both above and below dec = -30 degree line
n_pix = 1000
ra = -180. + 360.*np.random.random(n_pix)
dec = -75. + 90.*np.random.random(n_pix) # 45 degrees above/below
c = coords.SkyCoord(ra, dec, frame='icrs', unit='deg')
ebv_calc = self._bayestar(c, mode=mode)
nan_below = np.isnan(ebv_calc[dec < -35.])
nan_above = np.isnan(ebv_calc[dec > -25.])
pct_nan_above = np.sum(nan_above) / float(nan_above.size)
# print r'{:s}: {:.5f}% nan above dec=-25 deg.'.format(mode, 100.*pct_nan_above)
self.assertTrue(np.all(nan_below))
self.assertTrue(pct_nan_above < 0.05)
示例4: test_bounds
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import sum [as 别名]
def test_bounds(self):
"""
Test that out-of-bounds coordinates return NaN reddening, and that
in-bounds coordinates do not return NaN reddening.
"""
for mode in (['random_sample', 'random_sample_per_pix',
'median', 'samples', 'mean']):
# Draw random coordinates on the sphere
n_pix = 10000
u, v = np.random.random((2,n_pix))
l = 360. * u
b = 90. - np.degrees(np.arccos(2.*v - 1.))
c = coords.SkyCoord(l, b, frame='galactic', unit='deg')
A_calc = self._iphas(c, mode=mode)
in_bounds = (l > 32.) & (l < 213.) & (b < 4.5) & (b > -4.5)
out_of_bounds = (l < 28.) | (l > 217.) | (b > 7.) | (b < -7.)
n_nan_in_bounds = np.sum(np.isnan(A_calc[in_bounds]))
n_finite_out_of_bounds = np.sum(np.isfinite(A_calc[out_of_bounds]))
self.assertTrue(n_nan_in_bounds == 0)
self.assertTrue(n_finite_out_of_bounds == 0)
示例5: solve_modal
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import sum [as 别名]
def solve_modal(model,k:int):
"""
Solve eigen mode of the MDOF system
params:
model: FEModel.
k: number of modes to extract.
"""
K_,M_=model.K_,model.M_
if k>model.DOF:
logger.info('Warning: the modal number to extract is larger than the system DOFs, only %d modes are available'%model.DOF)
k=model.DOF
omega2s,modes = sl.eigsh(K_,k,M_,sigma=0,which='LM')
delta = modes/np.sum(modes,axis=0)
model.is_solved=True
model.mode_=delta
model.omega_=np.sqrt(omega2s).reshape((k,1))
示例6: _load_data
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import sum [as 别名]
def _load_data():
dfTrain = pd.read_csv(config.TRAIN_FILE)
dfTest = pd.read_csv(config.TEST_FILE)
def preprocess(df):
cols = [c for c in df.columns if c not in ["id", "target"]]
df["missing_feat"] = np.sum((df[cols] == -1).values, axis=1)
df["ps_car_13_x_ps_reg_03"] = df["ps_car_13"] * df["ps_reg_03"]
return df
dfTrain = preprocess(dfTrain)
dfTest = preprocess(dfTest)
cols = [c for c in dfTrain.columns if c not in ["id", "target"]]
cols = [c for c in cols if (not c in config.IGNORE_COLS)]
X_train = dfTrain[cols].values
y_train = dfTrain["target"].values
X_test = dfTest[cols].values
ids_test = dfTest["id"].values
cat_features_indices = [i for i,c in enumerate(cols) if c in config.CATEGORICAL_COLS]
return dfTrain, dfTest, X_train, y_train, X_test, ids_test, cat_features_indices
示例7: _prepro_cpg
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import sum [as 别名]
def _prepro_cpg(self, states, dists):
"""Preprocess the state and distance of neighboring CpG sites."""
prepro_states = []
prepro_dists = []
for state, dist in zip(states, dists):
nan = state == dat.CPG_NAN
if np.any(nan):
state[nan] = np.random.binomial(1, state[~nan].mean(),
nan.sum())
dist[nan] = self.cpg_max_dist
dist = np.minimum(dist, self.cpg_max_dist) / self.cpg_max_dist
prepro_states.append(np.expand_dims(state, 1))
prepro_dists.append(np.expand_dims(dist, 1))
prepro_states = np.concatenate(prepro_states, axis=1)
prepro_dists = np.concatenate(prepro_dists, axis=1)
if self.cpg_wlen:
center = prepro_states.shape[2] // 2
delta = self.cpg_wlen // 2
tmp = slice(center - delta, center + delta)
prepro_states = prepro_states[:, :, tmp]
prepro_dists = prepro_dists[:, :, tmp]
return (prepro_states, prepro_dists)
示例8: _avg_embed
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import sum [as 别名]
def _avg_embed(self, embed_dict, words_dict):
"""
:param embed_dict:
:param words_dict:
"""
print("loading pre_train embedding by avg for out of vocabulary.")
embeddings = np.zeros((int(self.words_count), int(self.dim)))
inword_list = {}
for word in words_dict:
if word in embed_dict:
embeddings[words_dict[word]] = np.array([float(i) for i in embed_dict[word]], dtype='float32')
inword_list[words_dict[word]] = 1
self.exact_count += 1
elif word.lower() in embed_dict:
embeddings[words_dict[word]] = np.array([float(i) for i in embed_dict[word.lower()]], dtype='float32')
inword_list[words_dict[word]] = 1
self.fuzzy_count += 1
else:
self.oov_count += 1
sum_col = np.sum(embeddings, axis=0) / len(inword_list) # avg
for i in range(len(words_dict)):
if i not in inword_list and i != self.padID:
embeddings[i] = sum_col
final_embed = torch.from_numpy(embeddings).float()
return final_embed
示例9: loss
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import sum [as 别名]
def loss(self, x, t):
"""求损失函数
Parameters
----------
x : 输入数据
t : 教师标签
Returns
-------
损失函数的值
"""
y = self.predict(x)
weight_decay = 0
for idx in range(1, self.hidden_layer_num + 2):
W = self.params['W' + str(idx)]
weight_decay += 0.5 * self.weight_decay_lambda * np.sum(W ** 2)
return self.last_layer.forward(y, t) + weight_decay
示例10: cost0
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import sum [as 别名]
def cost0(params, input_size, hidden_size, num_labels, X, y, learning_rate):
m = X.shape[0]
X = np.matrix(X)
y = np.matrix(y)
# reshape the parameter array into parameter matrices for each layer
theta1 = np.matrix(np.reshape(params[:hidden_size * (input_size + 1)], (hidden_size, (input_size + 1))))
theta2 = np.matrix(np.reshape(params[hidden_size * (input_size + 1):], (num_labels, (hidden_size + 1))))
# run the feed-forward pass
a1, z2, a2, z3, h = forward_propagate(X, theta1, theta2)
# compute the cost
J = 0
for i in range(m):
first_term = np.multiply(-y[i,:], np.log(h[i,:]))
second_term = np.multiply((1 - y[i,:]), np.log(1 - h[i,:]))
J += np.sum(first_term - second_term)
J = J / m
return J
示例11: cost
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import sum [as 别名]
def cost(params, input_size, hidden_size, num_labels, X, y, learning_rate):
m = X.shape[0]
X = np.matrix(X)
y = np.matrix(y)
# reshape the parameter array into parameter matrices for each layer
theta1 = np.matrix(np.reshape(params[:hidden_size * (input_size + 1)], (hidden_size, (input_size + 1))))
theta2 = np.matrix(np.reshape(params[hidden_size * (input_size + 1):], (num_labels, (hidden_size + 1))))
# run the feed-forward pass
a1, z2, a2, z3, h = forward_propagate(X, theta1, theta2)
# compute the cost
J = 0
for i in range(m):
first_term = np.multiply(-y[i,:], np.log(h[i,:]))
second_term = np.multiply((1 - y[i,:]), np.log(1 - h[i,:]))
J += np.sum(first_term - second_term)
J = J / m
# add the cost regularization term
J += (float(learning_rate) / (2 * m)) * (np.sum(np.power(theta1[:,1:], 2)) + np.sum(np.power(theta2[:,1:], 2)))
return J
示例12: select_threshold
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import sum [as 别名]
def select_threshold(pval, yval):
best_epsilon = 0
best_f1 = 0
f1 = 0
step = (pval.max() - pval.min()) / 1000
for epsilon in np.arange(pval.min(), pval.max(), step):
preds = pval < epsilon
tp = np.sum(np.logical_and(preds == 1, yval == 1)).astype(float)
fp = np.sum(np.logical_and(preds == 1, yval == 0)).astype(float)
fn = np.sum(np.logical_and(preds == 0, yval == 1)).astype(float)
precision = tp / (tp + fp)
recall = tp / (tp + fn)
f1 = (2 * precision * recall) / (precision + recall)
if f1 > best_f1:
best_f1 = f1
best_epsilon = epsilon
return best_epsilon, best_f1
示例13: cost
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import sum [as 别名]
def cost(params, Y, R, num_features):
Y = np.matrix(Y) # (1682, 943)
R = np.matrix(R) # (1682, 943)
num_movies = Y.shape[0]
num_users = Y.shape[1]
# reshape the parameter array into parameter matrices
X = np.matrix(np.reshape(params[:num_movies * num_features], (num_movies, num_features))) # (1682, 10)
Theta = np.matrix(np.reshape(params[num_movies * num_features:], (num_users, num_features))) # (943, 10)
# initializations
J = 0
# compute the cost
error = np.multiply((X * Theta.T) - Y, R) # (1682, 943)
squared_error = np.power(error, 2) # (1682, 943)
J = (1. / 2) * np.sum(squared_error)
return J
示例14: gradientReg
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import sum [as 别名]
def gradientReg(theta, X, y, learningRate):
theta = np.matrix(theta)
X = np.matrix(X)
y = np.matrix(y)
parameters = int(theta.ravel().shape[1])
grad = np.zeros(parameters)
error = sigmoid(X * theta.T) - y
for i in range(parameters):
term = np.multiply(error, X[:,i])
if (i == 0):
grad[i] = np.sum(term) / len(X)
else:
grad[i] = (np.sum(term) / len(X)) + ((learningRate / len(X)) * theta[:,i])
return grad
示例15: evaluate
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import sum [as 别名]
def evaluate(self, points):
points = atleast_2d(points)
d, m = points.shape
if d != self.d:
if d == 1 and m == self.d:
# points was passed in as a row vector
points = reshape(points, (self.d, 1))
m = 1
else:
msg = "points have dimension %s, dataset has dimension %s" % (d,
self.d)
raise ValueError(msg)
result = zeros((m,), dtype=np.float)
if m >= self.n:
# there are more points than data, so loop over data
for i in range(self.n):
diff = self.dataset[:, i, newaxis] - points
tdiff = dot(self.inv_cov, diff)
energy = sum(diff*tdiff,axis=0) / 2.0
result = result + exp(-energy)
else:
# loop over points
for i in range(m):
diff = self.dataset - points[:, i, newaxis]
tdiff = dot(self.inv_cov, diff)
energy = sum(diff * tdiff, axis=0) / 2.0
result[i] = sum(exp(-energy), axis=0)
result = result / self._norm_factor
return result