本文整理汇总了Python中numpy.savetxt方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.savetxt方法的具体用法?Python numpy.savetxt怎么用?Python numpy.savetxt使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy
的用法示例。
在下文中一共展示了numpy.savetxt方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: write_param
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import savetxt [as 别名]
def write_param(self, xml_filename='gap.xml'):
"""
Write xml file to perform lammps calculation.
Args:
xml_filename (str): Filename to store xml formatted parameters.
"""
if not self.param:
raise RuntimeError("The xml and parameters should be provided.")
tree = self.param.get('xml')
root = tree.getroot()
gpcoordinates = list(root.iter('gpCoordinates'))[0]
param_filename = "{}.soapparam".format(self.name)
gpcoordinates.set('sparseX_filename', param_filename)
np.savetxt(param_filename, self.param.get('param'), fmt='%.20e')
tree.write(xml_filename)
pair_coeff = self.pair_coeff.format(xml_filename,
'\"Potential xml_label={}\"'.
format(self.param.get('potential_label')),
self.specie.Z)
ff_settings = [self.pair_style, pair_coeff]
return ff_settings
示例2: pred_test
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import savetxt [as 别名]
def pred_test(testing_data, exe, param_list=None, save_path=""):
ret = numpy.zeros((testing_data.shape[0], 2))
if param_list is None:
for i in range(testing_data.shape[0]):
exe.arg_dict['data'][:] = testing_data[i, 0]
exe.forward(is_train=False)
ret[i, 0] = exe.outputs[0].asnumpy()
ret[i, 1] = numpy.exp(exe.outputs[1].asnumpy())
numpy.savetxt(save_path, ret)
else:
for i in range(testing_data.shape[0]):
pred = numpy.zeros((len(param_list),))
for j in range(len(param_list)):
exe.copy_params_from(param_list[j])
exe.arg_dict['data'][:] = testing_data[i, 0]
exe.forward(is_train=False)
pred[j] = exe.outputs[0].asnumpy()
ret[i, 0] = pred.mean()
ret[i, 1] = pred.std()**2
numpy.savetxt(save_path, ret)
mse = numpy.square(ret[:, 0] - testing_data[:, 0] **3).mean()
return mse, ret
示例3: print_mutation
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import savetxt [as 别名]
def print_mutation(hyp, results, bucket=''):
# Print mutation results to evolve.txt (for use with train.py --evolve)
a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
c = '%10.3g' * len(results) % results # results (P, R, mAP, F1, test_loss)
print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
if bucket:
os.system('gsutil cp gs://%s/evolve.txt .' % bucket) # download evolve.txt
with open('evolve.txt', 'a') as f: # append result
f.write(c + b + '\n')
x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
np.savetxt('evolve.txt', x[np.argsort(-fitness(x))], '%10.3g') # save sort by fitness
if bucket:
os.system('gsutil cp evolve.txt gs://%s' % bucket) # upload evolve.txt
示例4: run
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import savetxt [as 别名]
def run(self):
"""
resize images then write manifest files to disk.
"""
self.write_label()
self.collectdata()
records = [(fname, tgt)
for fname, tgt in self.trainpairlist.items()]
np.savetxt(self.manifests['train'], records, fmt='%s,%s')
records = [(fname, tgt)
for fname, tgt in self.valpairlist.items()]
np.savetxt(self.manifests['val'], records, fmt='%s,%s')
records = [(fname, tgt)
for fname, tgt in self.testpairlist.items()]
np.savetxt(self.manifests['test'], records, fmt='%s,%s')
示例5: extract_feature
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import savetxt [as 别名]
def extract_feature(model, model_path, dataloader, source, data_name):
model.load_state_dict(torch.load(model_path))
model.to(DEVICE)
model.eval()
fea = torch.zeros(1, 501).to(DEVICE)
with torch.no_grad():
for inputs, labels in dataloader:
inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
x = model.get_feature(inputs)
x = x.view(x.size(0), -1)
labels = labels.view(labels.size(0), 1).float()
x = torch.cat((x, labels), dim=1)
fea = torch.cat((fea, x), dim=0)
fea_numpy = fea.cpu().numpy()
np.savetxt('{}_{}.csv'.format(source, data_name), fea_numpy[1:], fmt='%.6f', delimiter=',')
print('{} - {} done!'.format(source, data_name))
# You may want to use this function to simply classify them after getting features
示例6: extract_feature
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import savetxt [as 别名]
def extract_feature(model, dataloader, save_path, load_from_disk=True, model_path=''):
if load_from_disk:
model = models.Network(base_net=args.model_name,
n_class=args.num_class)
model.load_state_dict(torch.load(model_path))
model = model.to(DEVICE)
model.eval()
correct = 0
fea_all = torch.zeros(1,1+model.base_network.output_num()).to(DEVICE)
with torch.no_grad():
for inputs, labels in dataloader:
inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
feas = model.get_features(inputs)
labels = labels.view(labels.size(0), 1).float()
x = torch.cat((feas, labels), dim=1)
fea_all = torch.cat((fea_all, x), dim=0)
outputs = model(inputs)
preds = torch.max(outputs, 1)[1]
correct += torch.sum(preds == labels.data.long())
test_acc = correct.double() / len(dataloader.dataset)
fea_numpy = fea_all.cpu().numpy()
np.savetxt(save_path, fea_numpy[1:], fmt='%.6f', delimiter=',')
print('Test acc: %f' % test_acc)
# You may want to classify with 1nn after getting features
示例7: main
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import savetxt [as 别名]
def main(args):
# dataset
testset = get_datasets(args)
batch_size = len(testset)
amp = args.deg * math.pi / 180.0
w = torch.randn(batch_size, 3)
w = w / w.norm(p=2, dim=1, keepdim=True) * amp
t = torch.rand(batch_size, 3) * args.max_trans
if args.format == 'wv':
# the output: twist vectors.
R = ptlk.so3.exp(w) # (N, 3) --> (N, 3, 3)
G = torch.zeros(batch_size, 4, 4)
G[:, 3, 3] = 1
G[:, 0:3, 0:3] = R
G[:, 0:3, 3] = t
x = ptlk.se3.log(G) # --> (N, 6)
else:
# rotation-vector and translation-vector
x = torch.cat((w, t), dim=1)
numpy.savetxt(args.outfile, x, delimiter=',')
示例8: generate_test_data
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import savetxt [as 别名]
def generate_test_data():
for str_problem in ["osy"]:
problem = get_problem(str_problem)
X = []
# define a callback function that prints the X and F value of the best individual
def my_callback(algorithm):
pop = algorithm.pop
_X = pop.get("X")[np.random.permutation(len(pop))[:10]]
X.append(_X)
minimize(problem,
method='nsga2',
method_args={'pop_size': 100},
termination=('n_gen', 100),
callback=my_callback,
pf=problem.pareto_front(),
disp=True,
seed=1)
np.savetxt("%s.x" % str_problem, np.concatenate(X, axis=0), delimiter=",")
示例9: get_predict_labels
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import savetxt [as 别名]
def get_predict_labels():
inputs = tf.placeholder("float", [None, 64, 64, 1])
is_training = tf.placeholder("bool")
prediction, _ = googlenet(inputs, is_training)
predict_labels = tf.argmax(prediction, 1)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
data = sio.loadmat("../data/dataset.mat")
testdata = data["test"] / 127.5 - 1.0
testlabel = data["testlabels"]
saver.restore(sess, "../save_para/.\\model.ckpt")
nums_test = testlabel.shape[1]
PREDICT_LABELS = np.zeros([nums_test])
for i in range(nums_test // BATCH_SIZE):
PREDICT_LABELS[i * BATCH_SIZE:i * BATCH_SIZE + BATCH_SIZE] = sess.run(predict_labels, feed_dict={inputs: testdata[i * BATCH_SIZE:i * BATCH_SIZE + BATCH_SIZE], is_training: False})
PREDICT_LABELS[(nums_test // BATCH_SIZE - 1) * BATCH_SIZE + BATCH_SIZE:] = sess.run(predict_labels, feed_dict={inputs: testdata[(nums_test // BATCH_SIZE - 1) * BATCH_SIZE + BATCH_SIZE:], is_training: False})
np.savetxt("../data/predict_labels.txt", PREDICT_LABELS)
开发者ID:MingtaoGuo,项目名称:Chinese-Character-and-Calligraphic-Image-Processing,代码行数:20,代码来源:confusionMatrix.py
示例10: test_0162_bse_h2o_spin2_uhf_cis
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import savetxt [as 别名]
def test_0162_bse_h2o_spin2_uhf_cis(self):
""" This """
mol = gto.M(verbose=1,atom='O 0 0 0; H 0 0.489 1.074; H 0 0.489 -1.074',basis='cc-pvdz',spin=2)
gto_mf = scf.UHF(mol)
gto_mf.kernel()
gto_td = tddft.TDDFT(gto_mf)
gto_td.nstates = 190
gto_td.kernel()
omegas = np.arange(0.0, 2.0, 0.01) + 1j*0.03
p_ave = -polariz_freq_osc_strength(gto_td.e, gto_td.oscillator_strength(), omegas).imag
data = np.array([omegas.real*HARTREE2EV, p_ave])
np.savetxt('test_0162_bse_h2o_spin2_uhf_cis_pyscf.txt', data.T, fmt=['%f','%f'])
#data_ref = np.loadtxt('test_0162_bse_h2o_spin2_uhf_cis_pyscf.txt-ref').T
#self.assertTrue(np.allclose(data_ref, data, atol=1e-6, rtol=1e-3))
nao_td = bse_iter(mf=gto_mf, gto=mol, verbosity=0, xc_code='CIS')
polariz = -nao_td.comp_polariz_inter_ave(omegas).imag
data = np.array([omegas.real*HARTREE2EV, polariz])
np.savetxt('test_0162_bse_h2o_spin2_uhf_cis_nao.txt', data.T, fmt=['%f','%f'])
#data_ref = np.loadtxt('test_0162_bse_h2o_spin2_uhf_cis_nao.txt-ref').T
#self.assertTrue(np.allclose(data_ref, data, atol=1e-6, rtol=1e-3), \
# msg="{}".format(abs(data_ref-data).sum()/data.size))
示例11: test_bse_gto_vs_nao_inter_0082
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import savetxt [as 别名]
def test_bse_gto_vs_nao_inter_0082(self):
""" Interacting case """
#dm1 = gto_mf.make_rdm1()
#o1 = gto_mf.get_ovlp()
#print(__name__, 'dm1*o1', (dm1*o1).sum())
nao_td = bse_iter(mf=gto_mf, gto=mol, verbosity=0, xc_code='GW', perform_gw=True)
#dm2 = nao_td.make_rdm1()
#o2 = nao_td.get_ovlp()
#n = nao_td.norbs
#print(__name__, 'dm2*o2', (dm2.reshape((n,n))*o2).sum())
omegas = np.linspace(0.0,2.0,450)+1j*0.04
p_iter = -nao_td.comp_polariz_inter_ave(omegas).imag
data = np.array([omegas.real*27.2114, p_iter])
np.savetxt('be.bse_iter.omega.inter.ave.txt', data.T, fmt=['%f','%f'])
示例12: test_gw
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import savetxt [as 别名]
def test_gw(self):
""" This is GW """
mol = gto.M( verbose = 1, atom = '''H 0 0 0; H 0.17 0.7 0.587''', basis = 'cc-pvdz',)
#mol = gto.M( verbose = 0, atom = '''H 0.0 0.0 -0.3707; H 0.0 0.0 0.3707''', basis = 'cc-pvdz',)
gto_mf = scf.RHF(mol)
gto_mf.kernel()
#print('gto_mf.mo_energy:', gto_mf.mo_energy)
b = bse_iter(mf=gto_mf, gto=mol, perform_gw=True, xc_code='GW', verbosity=0, nvrt=4)
#self.assertAlmostEqual(b.mo_energy[0], -0.5967647)
#self.assertAlmostEqual(b.mo_energy[1], 0.19072719)
omegas = np.linspace(0.0,2.0,450)+1j*0.04
p_iter = -b.comp_polariz_inter_ave(omegas).imag
data = np.array([omegas.real*27.2114, p_iter])
np.savetxt('h2_gw_bse_iter.omega.inter.ave.txt', data.T)
data_ref = np.loadtxt('h2_gw_bse_iter.omega.inter.ave.txt-ref').T
#print(__name__, abs(data_ref-data).sum()/data.size)
self.assertTrue(np.allclose(data_ref, data, 5))
p_iter = -b.comp_polariz_nonin_ave(omegas).imag
data = np.array([omegas.real*27.2114, p_iter])
np.savetxt('h2_gw_bse_iter.omega.nonin.ave.txt', data.T)
示例13: test_0040_bse_rpa_nao
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import savetxt [as 别名]
def test_0040_bse_rpa_nao(self):
""" Compute polarization with RPA via 2-point non-local potentials (BSE solver) """
from timeit import default_timer as timer
dname = os.path.dirname(os.path.abspath(__file__))
bse = bse_iter(label='water', cd=dname, xc_code='RPA', verbosity=0)
omegas = np.linspace(0.0,2.0,150)+1j*0.01
#print(__name__, omegas.shape)
pxx = np.zeros(len(omegas))
for iw,omega in enumerate(omegas):
for ixyz in range(1):
dip = bse.dip_ab[ixyz]
vab = bse.apply_l(dip, omega)
pxx[iw] = pxx[iw] - (vab.imag*dip.reshape(-1)).sum()
data = np.array([omegas.real*27.2114, pxx])
np.savetxt('water.bse_iter_rpa.omega.inter.pxx.txt', data.T, fmt=['%f','%f'])
data_ref = np.loadtxt(dname+'/water.bse_iter_rpa.omega.inter.pxx.txt-ref')
#print(' bse.l0_ncalls ', bse.l0_ncalls)
self.assertTrue(np.allclose(data_ref,data.T, rtol=1.0, atol=1e-05))
示例14: test_x_zip_feature_na20_chain
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import savetxt [as 别名]
def test_x_zip_feature_na20_chain(self):
""" This a test for compression of the eigenvectos at higher energies """
dname = dirname(abspath(__file__))
siesd = dname+'/sodium_20'
x = td_c(label='siesta', cd=siesd,x_zip=True, x_zip_emax=0.25,x_zip_eps=0.05,jcutoff=7,xc_code='RPA',nr=128, fermi_energy=-0.0913346431431985)
eps = 0.005
ww = np.arange(0.0, 0.5, eps/2.0)+1j*eps
data = np.array([ww.real*27.2114, -x.comp_polariz_inter_ave(ww).imag])
fname = 'na20_chain.tddft_iter_rpa.omega.inter.ave.x_zip.txt'
np.savetxt(fname, data.T, fmt=['%f','%f'])
#print(__file__, fname)
data_ref = np.loadtxt(dname+'/'+fname+'-ref')
#print(' x.rf0_ncalls ', x.rf0_ncalls)
#print(' x.matvec_ncalls ', x.matvec_ncalls)
self.assertTrue(np.allclose(data_ref,data.T, rtol=1.0e-1, atol=1e-06))
示例15: test_161_bse_h2b_spin1_uhf_cis
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import savetxt [as 别名]
def test_161_bse_h2b_spin1_uhf_cis(self):
""" This """
mol = gto.M(verbose=1,atom='B 0 0 0; H 0 0.489 1.074; H 0 0.489 -1.074',basis='cc-pvdz',spin=1)
gto_mf = scf.UHF(mol)
gto_mf.kernel()
gto_td = tddft.TDHF(gto_mf)
gto_td.nstates = 150
gto_td.kernel()
omegas = np.arange(0.0, 2.0, 0.01) + 1j*0.03
p_ave = -polariz_freq_osc_strength(gto_td.e, gto_td.oscillator_strength(), omegas).imag
data = np.array([omegas.real*HARTREE2EV, p_ave])
np.savetxt('test_0161_bse_h2b_spin1_uhf_cis_pyscf.txt', data.T, fmt=['%f','%f'])
#data_ref = np.loadtxt('test_0159_bse_h2b_uhf_cis_pyscf.txt-ref').T
#self.assertTrue(np.allclose(data_ref, data, atol=1e-6, rtol=1e-3))
nao_td = bse_iter(mf=gto_mf, gto=mol, verbosity=0, xc_code='CIS')
polariz = -nao_td.comp_polariz_inter_ave(omegas).imag
data = np.array([omegas.real*HARTREE2EV, polariz])
np.savetxt('test_0161_bse_h2b_spin1_uhf_cis_nao.txt', data.T, fmt=['%f','%f'])
#data_ref = np.loadtxt('test_0161_bse_h2b_spin1_uhf_cis_nao.txt-ref').T
#self.assertTrue(np.allclose(data_ref, data, atol=1e-6, rtol=1e-3))