本文整理汇总了Python中numpy.round_方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.round_方法的具体用法?Python numpy.round_怎么用?Python numpy.round_使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy
的用法示例。
在下文中一共展示了numpy.round_方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_2d
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import round_ [as 别名]
def test_2d(self):
# Tests mr_ on 2D arrays.
a_1 = np.random.rand(5, 5)
a_2 = np.random.rand(5, 5)
m_1 = np.round_(np.random.rand(5, 5), 0)
m_2 = np.round_(np.random.rand(5, 5), 0)
b_1 = masked_array(a_1, mask=m_1)
b_2 = masked_array(a_2, mask=m_2)
# append columns
d = mr_['1', b_1, b_2]
assert_(d.shape == (5, 10))
assert_array_equal(d[:, :5], b_1)
assert_array_equal(d[:, 5:], b_2)
assert_array_equal(d.mask, np.r_['1', m_1, m_2])
d = mr_[b_1, b_2]
assert_(d.shape == (10, 5))
assert_array_equal(d[:5,:], b_1)
assert_array_equal(d[5:,:], b_2)
assert_array_equal(d.mask, np.r_[m_1, m_2])
示例2: test_2d
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import round_ [as 别名]
def test_2d(self):
# Tests mr_ on 2D arrays.
a_1 = np.random.rand(5, 5)
a_2 = np.random.rand(5, 5)
m_1 = np.round_(np.random.rand(5, 5), 0)
m_2 = np.round_(np.random.rand(5, 5), 0)
b_1 = masked_array(a_1, mask=m_1)
b_2 = masked_array(a_2, mask=m_2)
# append columns
d = mr_['1', b_1, b_2]
self.assertTrue(d.shape == (5, 10))
assert_array_equal(d[:, :5], b_1)
assert_array_equal(d[:, 5:], b_2)
assert_array_equal(d.mask, np.r_['1', m_1, m_2])
d = mr_[b_1, b_2]
self.assertTrue(d.shape == (10, 5))
assert_array_equal(d[:5,:], b_1)
assert_array_equal(d[5:,:], b_2)
assert_array_equal(d.mask, np.r_[m_1, m_2])
示例3: test_2d
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import round_ [as 别名]
def test_2d(self):
"Tests mr_ on 2D arrays."
a_1 = rand(5, 5)
a_2 = rand(5, 5)
m_1 = np.round_(rand(5, 5), 0)
m_2 = np.round_(rand(5, 5), 0)
b_1 = masked_array(a_1, mask=m_1)
b_2 = masked_array(a_2, mask=m_2)
d = mr_['1', b_1, b_2] # append columns
self.assertTrue(d.shape == (5, 10))
assert_array_equal(d[:, :5], b_1)
assert_array_equal(d[:, 5:], b_2)
assert_array_equal(d.mask, np.r_['1', m_1, m_2])
d = mr_[b_1, b_2]
self.assertTrue(d.shape == (10, 5))
assert_array_equal(d[:5,:], b_1)
assert_array_equal(d[5:,:], b_2)
assert_array_equal(d.mask, np.r_[m_1, m_2])
示例4: fast_smoothing
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import round_ [as 别名]
def fast_smoothing(odms, high, low, threshold):
for i,odm in (enumerate(odms)):
copy = np.array(odm)
on = np.where(odm != high)
for x,y in zip(*on):
window = odm[x-3:x+4,y-3:y+4] #window
considered = np.where( abs(window - odm[x,y])< threshold)
copy[x,y] = np.average(window[considered])
odms[i] = np.round_(copy)
return odms
# reconvers full odm from occupancy and depth map
开发者ID:EdwardSmith1884,项目名称:Multi-View-Silhouette-and-Depth-Decomposition-for-High-Resolution-3D-Object-Representation,代码行数:19,代码来源:utils.py
示例5: summary
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import round_ [as 别名]
def summary(self, decimal=3):
"""Generate the summary information after the corrected risk ratio distribution is
generated. fit() must be run before this
Parameters
-------------
decimal : int, optional
Decimal places to display in output. Default is 3
"""
print('----------------------------------------------------------------------')
print('Median corrected Risk Ratio: ', np.round(np.median(self.corrected_RR),decimal))
print('Mean corrected Risk Ratio: ', np.round(np.mean(self.corrected_RR),decimal))
print('25th & 75th Percentiles: ', np.round_(np.percentile(self.corrected_RR,q=[25, 75]), decimals=decimal))
print('2.5th & 97.5th Percentiles: ', np.round_(np.percentile(self.corrected_RR,q=[2.5, 97.5]),
decimals=decimal))
print('----------------------------------------------------------------------')
示例6: test_2d
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import round_ [as 别名]
def test_2d(self):
# Tests mr_ on 2D arrays.
a_1 = rand(5, 5)
a_2 = rand(5, 5)
m_1 = np.round_(rand(5, 5), 0)
m_2 = np.round_(rand(5, 5), 0)
b_1 = masked_array(a_1, mask=m_1)
b_2 = masked_array(a_2, mask=m_2)
# append columns
d = mr_['1', b_1, b_2]
self.assertTrue(d.shape == (5, 10))
assert_array_equal(d[:, :5], b_1)
assert_array_equal(d[:, 5:], b_2)
assert_array_equal(d.mask, np.r_['1', m_1, m_2])
d = mr_[b_1, b_2]
self.assertTrue(d.shape == (10, 5))
assert_array_equal(d[:5,:], b_1)
assert_array_equal(d[5:,:], b_2)
assert_array_equal(d.mask, np.r_[m_1, m_2])
示例7: test_assemble_matrixT_returns_expected_output_with_known_input
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import round_ [as 别名]
def test_assemble_matrixT_returns_expected_output_with_known_input(self):
"""Sends input that has known T matrix, expects the same output"""
ang_list = [0, 90, -45, +45, 90, 0]
for ang in ang_list:
T = clt.assemble_matrixT(ang)
T = numpy.round_(T, 6)
if ang == 0:
expected_T = numpy.array([[ 1, 0, 0],
[ 0, 1, 0],
[ 0, 0, 1]])
elif ang == 90:
expected_T = numpy.array([[ 0, 1, 0],
[ 1, 0, 0],
[ 0, 0, -1]])
elif ang == -45:
expected_T = numpy.array([[ 0.5, 0.5, -0.5],
[ 0.5, 0.5, -0.5],
[ 1, -1, 0]])
elif ang == +45:
expected_T = numpy.array([[ 0.5, 0.5, 0.5],
[ 0.5, 0.5, -0.5],
[ -1, 1, 0]])
expected_Ti_list = [int(Ti) for Ti in numpy.nditer(expected_T)]
returned_Ti_list = [int(Ti) for Ti in numpy.nditer(T)]
self.assertTrue(expected_Ti_list == returned_Ti_list)
示例8: fix_top
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import round_ [as 别名]
def fix_top(A):
"""
Takes a symmetric binary matrix with ones along the diagonal
and returns the permutation matrix P such that the [1:t,1:t]
submatrix of P A P is invertible
"""
if A.shape == (1, 1):
return _np.eye(1, dtype='int')
t = len(A)
found_B = False
for ind in range(t):
aa, P = permute_top(A, ind)
B = _np.round_(aa[1:, 1:])
if detmod2(B) == 0:
continue
else:
found_B = True
break
# Todo : put a more meaningful fail message here #
assert(found_B), "Algorithm failed!"
return P
示例9: test_learning_2x2_grid_world
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import round_ [as 别名]
def test_learning_2x2_grid_world(self):
"""
Tests if apex can learn a simple environment using a single worker, thus replicating
dqn.
"""
env_spec = dict(
type="grid-world",
world="2x2",
save_mode=False
)
agent_config = config_from_path("configs/apex_agent_for_2x2_gridworld.json")
executor = ApexExecutor(
environment_spec=env_spec,
agent_config=agent_config,
)
# Define executor, test assembly.
print("Successfully created executor.")
# Executes actual workload.
result = executor.execute_workload(workload=dict(
num_timesteps=5000, report_interval=100, report_interval_min_seconds=1)
)
full_worker_stats = executor.result_by_worker()
print("All finished episode rewards")
print(full_worker_stats["episode_rewards"])
print("STATES:\n{}".format(executor.local_agent.last_q_table["states"]))
print("\n\nQ(s,a)-VALUES:\n{}".format(np.round_(executor.local_agent.last_q_table["q_values"], decimals=2)))
# Check q-table for correct values.
expected_q_values_per_state = {
(1.0, 0, 0, 0): (-1, -5, 0, -1),
(0, 1.0, 0, 0): (-1, 1, 0, 0)
}
for state, q_values in zip(
executor.local_agent.last_q_table["states"], executor.local_agent.last_q_table["q_values"]
):
state, q_values = tuple(state), tuple(q_values)
assert state in expected_q_values_per_state, \
"ERROR: state '{}' not expected in q-table as it's a terminal state!".format(state)
recursive_assert_almost_equal(q_values, expected_q_values_per_state[state], decimals=0)
示例10: get_dataloader
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import round_ [as 别名]
def get_dataloader(datapath, args, num_templates=25,
template_file="templates.json", img_transforms=None,
train=True, split="train"):
template_file = osp.join("datasets", template_file)
if osp.exists(template_file):
templates = json.load(open(template_file))
else:
# Cluster the bounding boxes to get the templates
dataset = WIDERFace(osp.expanduser(args.traindata), [])
clustering = compute_kmedoids(dataset.get_all_bboxes(), 1, indices=num_templates,
option='pyclustering', max_clusters=num_templates)
print("Canonical bounding boxes computed")
templates = clustering[num_templates]['medoids'].tolist()
# record templates
json.dump(templates, open(template_file, "w"))
templates = np.round_(np.array(templates), decimals=8)
data_loader = data.DataLoader(WIDERFace(osp.expanduser(datapath), templates,
train=train, split=split, img_transforms=img_transforms,
dataset_root=osp.expanduser(args.dataset_root),
debug=args.debug),
batch_size=args.batch_size, shuffle=train,
num_workers=args.workers, pin_memory=True)
return data_loader, templates
示例11: recover_depths
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import round_ [as 别名]
def recover_depths(preds, ups, high, dis):
preds = np.round_(preds*dis).reshape((-1,high,high))
ups = np.array(ups).reshape((-1,high,high))
for pred, up, i in zip(preds, ups, range(preds.shape[0])):
pred = np.array(pred)
pred = up + pred # add to upsampled low resolution odm
off = np.where(pred > high) # set values which predict to high to be unoccupited -> 0
pred[off] = high-1
preds[i] = pred
return preds
# compute complete occupancy map, basically thresholds the probability outputs
开发者ID:EdwardSmith1884,项目名称:Multi-View-Silhouette-and-Depth-Decomposition-for-High-Resolution-3D-Object-Representation,代码行数:15,代码来源:utils.py
示例12: get_section
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import round_ [as 别名]
def get_section(
self,
start_polar: Optional[Tuple[float, float]] = None,
end_polar: Optional[Tuple[float, float]] = None,
start_cart: Optional[Tuple[float, float]] = None,
end_cart: Optional[Tuple[float, float]] = None,
spacing: int = 500,
) -> Dataset:
r"""
Get cross-section data from input points
Args:
start_polar (tuple): polar coordinates of start point i.e.(distance, azimuth)
end_polar (tuple): polar coordinates of end point i.e.(distance, azimuth)
start_cart (tuple): geographic coordinates of start point i.e.(longitude, latitude)
end_cart (tuple): geographic coordinates of end point i.e.(longitude, latitude)
Returns:
xarray.Dataset: Cross-section data
"""
if start_polar and end_polar:
stlat = self.rl[0].stp["lat"]
stlon = self.rl[0].stp["lon"]
stp = np.round_(
get_coordinate(
start_polar[0], start_polar[1] * deg2rad, 0, stlon, stlat
),
2,
)
enp = np.round_(
get_coordinate(end_polar[0], end_polar[1] * deg2rad, 0, stlon, stlat), 2
)
elif start_cart and end_cart:
stp = start_cart
enp = end_cart
else:
raise RadarCalculationError("Invalid input")
return self._get_section(stp, enp, spacing)
示例13: _process_grid
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import round_ [as 别名]
def _process_grid(self, x_step: Number_T, y_step: Number_T) -> Tuple[np.ndarray]:
x_lower = np.round_(self.lon_ravel.min(), 2)
x_upper = np.round_(self.lon_ravel.max(), 2)
y_lower = np.round_(self.lat_ravel.min(), 2)
y_upper = np.round_(self.lat_ravel.max(), 2)
x_grid = np.arange(x_lower, x_upper + x_step, x_step)
y_grid = np.arange(y_lower, y_upper + x_step, x_step)
return np.meshgrid(x_grid, y_grid)
示例14: test_round_
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import round_ [as 别名]
def test_round_(self):
self.check(np.round_)
示例15: get_orthogonal_grid_edges
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import round_ [as 别名]
def get_orthogonal_grid_edges(pix_x, pix_y, scale_aspect=True):
"""calculate the bin edges of the slanted, orthogonal pixel grid to
resample the pixel signals with np.histogramdd right after.
Parameters
----------
pix_x, pix_y : 1D numpy arrays
the list of x and y coordinates of the slanted, orthogonal pixel grid
units should be in meters, and stripped off
scale_aspect : boolean (default: True)
if True, rescales the x-coordinates to create square pixels
(instead of rectangular ones)
Returns
--------
x_edges, y_edges : 1D numpy arrays
the bin edges for the slanted, orthogonal pixel grid
x_scale : float
factor by which the x-coordinates have been scaled
"""
# finding the size of the square patches
d_x = 99
d_y = 99
x_base = pix_x[0]
y_base = pix_y[0]
for x, y in zip(pix_x, pix_y):
if abs(y - y_base) < abs(x - x_base):
d_x = min(d_x, abs(x - x_base))
if abs(y - y_base) > abs(x - x_base):
d_y = min(d_y, abs(y - y_base))
# for x, y in zip(pix_x, pix_y):
# if abs(y - y_base) > abs(x - x_base):
# d_y = min(d_y, abs(y - y_base))
x_scale = 1
if scale_aspect:
x_scale = d_y / d_x
pix_x *= x_scale
d_x = d_y
# with the maximal extension of the axes and the size of the pixels,
# determine the number of bins in each direction
n_bins_x = int(np.round_(np.abs(np.max(pix_x) - np.min(pix_x)) / d_x) + 2)
n_bins_y = int(np.round_(np.abs(np.max(pix_y) - np.min(pix_y)) / d_y) + 2)
x_edges = np.linspace(pix_x.min(), pix_x.max(), n_bins_x)
y_edges = np.linspace(pix_y.min(), pix_y.max(), n_bins_y)
return (x_edges, y_edges, x_scale)