当前位置: 首页>>代码示例>>Python>>正文


Python numpy.reshape方法代码示例

本文整理汇总了Python中numpy.reshape方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.reshape方法的具体用法?Python numpy.reshape怎么用?Python numpy.reshape使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy的用法示例。


在下文中一共展示了numpy.reshape方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: set_values

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import reshape [as 别名]
def set_values(name, param, pretrained):
#{{{
    """
    Initialize a network parameter with pretrained values.
    We check that sizes are compatible.
    """
    param_value = param.get_value()
    if pretrained.size != param_value.size:
        raise Exception(
            "Size mismatch for parameter %s. Expected %i, found %i."
            % (name, param_value.size, pretrained.size)
        )
    param.set_value(np.reshape(
        pretrained, param_value.shape
    ).astype(np.float32))
#}}} 
开发者ID:lingluodlut,项目名称:Att-ChemdNER,代码行数:18,代码来源:utils.py

示例2: mtx_freq2visi

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import reshape [as 别名]
def mtx_freq2visi(M, p_mic_x, p_mic_y):
    """
    build the matrix that maps the Fourier series to the visibility
    :param M: the Fourier series expansion is limited from -M to M
    :param p_mic_x: a vector that constains microphones x coordinates
    :param p_mic_y: a vector that constains microphones y coordinates
    :return:
    """
    num_mic = p_mic_x.size
    ms = np.reshape(np.arange(-M, M + 1, step=1), (1, -1), order='F')
    G = np.zeros((num_mic * (num_mic - 1), 2 * M + 1), dtype=complex, order='C')
    count_G = 0
    for q in range(num_mic):
        p_x_outer = p_mic_x[q]
        p_y_outer = p_mic_y[q]
        for qp in range(num_mic):
            if not q == qp:
                p_x_qqp = p_x_outer - p_mic_x[qp]
                p_y_qqp = p_y_outer - p_mic_y[qp]
                norm_p_qqp = np.sqrt(p_x_qqp ** 2 + p_y_qqp ** 2)
                phi_qqp = np.arctan2(p_y_qqp, p_x_qqp)
                G[count_G, :] = (-1j) ** ms * sp.special.jv(ms, norm_p_qqp) * \
                                np.exp(1j * ms * phi_qqp)
                count_G += 1
    return G 
开发者ID:LCAV,项目名称:FRIDA,代码行数:27,代码来源:tools_fri_doa_plane.py

示例3: mtx_updated_G

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import reshape [as 别名]
def mtx_updated_G(phi_recon, M, mtx_amp2visi_ri, mtx_fri2visi_ri):
    """
    Update the linear transformation matrix that links the FRI sequence to the
    visibilities by using the reconstructed Dirac locations.
    :param phi_recon: the reconstructed Dirac locations (azimuths)
    :param M: the Fourier series expansion is between -M to M
    :param p_mic_x: a vector that contains microphones' x-coordinates
    :param p_mic_y: a vector that contains microphones' y-coordinates
    :param mtx_freq2visi: the linear mapping from Fourier series to visibilities
    :return:
    """
    L = 2 * M + 1
    ms_half = np.reshape(np.arange(-M, 1, step=1), (-1, 1), order='F')
    phi_recon = np.reshape(phi_recon, (1, -1), order='F')
    mtx_amp2freq = np.exp(-1j * ms_half * phi_recon)  # size: (M + 1) x K
    mtx_amp2freq_ri = np.vstack((mtx_amp2freq.real, mtx_amp2freq.imag[:-1, :]))  # size: (2M + 1) x K
    mtx_fri2amp_ri = linalg.lstsq(mtx_amp2freq_ri, np.eye(L))[0]
    # projection mtx_freq2visi to the null space of mtx_fri2amp
    mtx_null_proj = np.eye(L) - np.dot(mtx_fri2amp_ri.T,
                                       linalg.lstsq(mtx_fri2amp_ri.T, np.eye(L))[0])
    G_updated = np.dot(mtx_amp2visi_ri, mtx_fri2amp_ri) + \
                np.dot(mtx_fri2visi_ri, mtx_null_proj)
    return G_updated 
开发者ID:LCAV,项目名称:FRIDA,代码行数:25,代码来源:tools_fri_doa_plane.py

示例4: __getitem__

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import reshape [as 别名]
def __getitem__(self, index):

        img=self.adv_flat[self.sample_num,:]

        if(self.shuff == False):
            # shuff is true for non-pgd attacks
            img = torch.from_numpy(np.reshape(img,(3,32,32)))
        else:
            img = torch.from_numpy(img).type(torch.FloatTensor)
        target = np.argmax(self.adv_dict["adv_labels"],axis=1)[self.sample_num]
        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        self.sample_num = self.sample_num + 1
        return img, target 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:22,代码来源:custom_datasets.py

示例5: __getitem__

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import reshape [as 别名]
def __getitem__(self, index):
        img=self.adv_flat[self.sample_num,:]
        if(self.transp == False):
            # shuff is true for non-pgd attacks
            img = torch.from_numpy(np.reshape(img,(28,28)))
        else:
            img = torch.from_numpy(img).type(torch.FloatTensor)
        target = np.argmax(self.adv_dict["adv_labels"],axis=1)[self.sample_num]
        # doing this so that it is consistent with all other datasets
        # to return a PIL Image

        if self.transform is not None:
            img = self.transform(img)
        if self.target_transform is not None:
            target = self.target_transform(target)
        self.sample_num = self.sample_num + 1
        return img, target 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:19,代码来源:custom_datasets.py

示例6: train_lr_rfeinman

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import reshape [as 别名]
def train_lr_rfeinman(densities_pos, densities_neg, uncerts_pos, uncerts_neg):
    """
    TODO
    :param densities_pos:
    :param densities_neg:
    :param uncerts_pos:
    :param uncerts_neg:
    :return:
    """
    values_neg = np.concatenate(
        (densities_neg.reshape((1, -1)),
         uncerts_neg.reshape((1, -1))),
        axis=0).transpose([1, 0])
    values_pos = np.concatenate(
        (densities_pos.reshape((1, -1)),
         uncerts_pos.reshape((1, -1))),
        axis=0).transpose([1, 0])

    values = np.concatenate((values_neg, values_pos))
    labels = np.concatenate(
        (np.zeros_like(densities_neg), np.ones_like(densities_pos)))

    lr = LogisticRegressionCV(n_jobs=-1).fit(values, labels)

    return values, labels, lr 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:27,代码来源:util.py

示例7: auto_inverse

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import reshape [as 别名]
def auto_inverse(self, whole_spectrum):
        whole_spectrum = np.copy(whole_spectrum).astype(complex)
        whole_spectrum[whole_spectrum < 1] = 1
        overwrap = self.buffer_size * 2
        height = whole_spectrum.shape[0]
        parallel_dif = (height-overwrap) // self.parallel
        if height < self.parallel*overwrap:
            raise Exception('voice length is too small to use gpu, or parallel number is too big')

        spec = [self.inverse(whole_spectrum[range(i, i+parallel_dif*self.parallel, parallel_dif), :]) for i in tqdm.tqdm(range(parallel_dif+overwrap))]
        spec = spec[overwrap:]
        spec = np.concatenate(spec, axis=1)
        spec = spec.reshape(-1, self.wave_len)

        #Below code don't consider wave_len and wave_dif, I'll fix.
        wave = np.fft.ifft(spec, axis=1).real
        pad = np.zeros((wave.shape[0], 2), dtype=float)
        wave = np.concatenate([wave, pad], axis=1)

        dst = np.zeros((wave.shape[0]+3)*self.wave_dif, dtype=float)
        for i in range(4):
            w = wave[range(i, wave.shape[0], 4),:]
            w = w.reshape(-1)
            dst[i*self.wave_dif:i*self.wave_dif+len(w)] += w
        return dst*0.5 
开发者ID:pstuvwx,项目名称:Deep_VoiceChanger,代码行数:27,代码来源:gla_gpu.py

示例8: wave2input_image

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import reshape [as 别名]
def wave2input_image(wave, window, pos=0, pad=0):
    wave_image = np.hstack([wave[pos+i*sride:pos+(i+pad*2)*sride+dif].reshape(height+pad*2, sride) for i in range(256//sride)])[:,:254]
    wave_image *= window
    spectrum_image = np.fft.fft(wave_image, axis=1)
    input_image = np.abs(spectrum_image[:,:128].reshape(1, height+pad*2, 128), dtype=np.float32)

    np.clip(input_image, 1000, None, out=input_image)
    np.log(input_image, out=input_image)
    input_image += bias
    input_image /= scale

    if np.max(input_image) > 0.95:
        print('input image max bigger than 0.95', np.max(input_image))
    if np.min(input_image) < 0.05:
        print('input image min smaller than 0.05', np.min(input_image))

    return input_image 
开发者ID:pstuvwx,项目名称:Deep_VoiceChanger,代码行数:19,代码来源:dataset.py

示例9: plot_n_image

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import reshape [as 别名]
def plot_n_image(X, n):
    """ plot first n images
    n has to be a square number
    """
    pic_size = int(np.sqrt(X.shape[1]))
    grid_size = int(np.sqrt(n))

    first_n_images = X[:n, :]

    fig, ax_array = plt.subplots(nrows=grid_size, ncols=grid_size,
                                    sharey=True, sharex=True, figsize=(8, 8))

    for r in range(grid_size):
        for c in range(grid_size):
            ax_array[r, c].imshow(first_n_images[grid_size * r + c].reshape((pic_size, pic_size)))
            plt.xticks(np.array([]))
            plt.yticks(np.array([])) 
开发者ID:wdxtub,项目名称:deep-learning-note,代码行数:19,代码来源:8_kmeans_pca.py

示例10: parse_dataobj

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import reshape [as 别名]
def parse_dataobj(self, dataobj, hdat={}):
        # first, see if we have a specified shape/size
        ish = next((hdat[k] for k in ('image_size', 'image_shape', 'shape') if k in hdat), None)
        if ish is Ellipsis: ish = None
        # make a numpy array of the appropriate dtype
        dtype = self.parse_type(hdat, dataobj=dataobj)
        try:    dataobj = dataobj.dataobj
        except Exception: pass
        if   dataobj is not None: arr = np.asarray(dataobj).astype(dtype)
        elif ish:                 arr = np.zeros(ish,       dtype=dtype)
        else:                     arr = np.zeros([1,1,1,0], dtype=dtype)
        # reshape to the requested shape if need-be
        if ish and ish != arr.shape: arr = np.reshape(arr, ish)
        # then reshape to a valid (4D) shape
        sh = arr.shape
        if   len(sh) == 2: arr = np.reshape(arr, (sh[0], 1, 1, sh[1]))
        elif len(sh) == 1: arr = np.reshape(arr, (sh[0], 1, 1))
        elif len(sh) == 3: arr = np.reshape(arr, sh)
        elif len(sh) != 4: raise ValueError('Cannot convert n-dimensional array to image if n > 4')
        # and return
        return arr 
开发者ID:noahbenson,项目名称:neuropythy,代码行数:23,代码来源:images.py

示例11: image_reslice

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import reshape [as 别名]
def image_reslice(image, spec, method=None, fill=0, dtype=None, weights=None, image_type=None):
    '''
    image_reslice(image, spec) yields a duplicate of the given image resliced to have the voxels
      indicated by the given image spec. Note that spec may be an image itself.

    Optional arguments that can be passed to image_interpolate() (asside from affine) are allowed
    here and are passed through.
    '''
    if image_type is None and is_image(image): image_type = to_image_type(image)
    spec = to_image_spec(spec)
    image = to_image(image)
    # we make a big mesh and interpolate at these points...
    imsh = spec['image_shape']
    (args, kw) = ([np.arange(n) for n in imsh[:3]], {'indexing': 'ij'})
    ijk = np.asarray([u.flatten() for u in np.meshgrid(*args, **kw)])
    ijk = np.dot(spec['affine'], np.vstack([ijk, np.ones([1,ijk.shape[1]])]))[:3]
    # interpolate here...
    u = image_interpolate(image, ijk, method=method, fill=fill, dtype=dtype, weights=weights)
    return to_image((np.reshape(u, imsh), spec), image_type=image_type) 
开发者ID:noahbenson,项目名称:neuropythy,代码行数:21,代码来源:images.py

示例12: point_on_segment

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import reshape [as 别名]
def point_on_segment(ac, b, atol=1e-8):
    '''
    point_on_segment((a,b), c) yields True if point x is on segment (a,b) and False otherwise. Note
    that this differs from point_in_segment in that a point that if c is equal to a or b it is
    considered 'on' but not 'in' the segment.
    The option atol can be given and is used only to test for difference from 0; by default it is
    1e-8.
    '''
    (a,c) = ac
    abc = [np.asarray(u) for u in (a,b,c)]
    if any(len(u.shape) > 1 for u in abc): (a,b,c) = [np.reshape(u,(len(u),-1)) for u in abc]
    else:                                  (a,b,c) = abc
    vab = b - a
    vbc = c - b
    vac = c - a
    dab = np.sqrt(np.sum(vab**2, axis=0))
    dbc = np.sqrt(np.sum(vbc**2, axis=0))
    dac = np.sqrt(np.sum(vac**2, axis=0))
    return np.isclose(dab + dbc - dac, 0, atol=atol) 
开发者ID:noahbenson,项目名称:neuropythy,代码行数:21,代码来源:util.py

示例13: point_in_segment

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import reshape [as 别名]
def point_in_segment(ac, b, atol=1e-8):
    '''
    point_in_segment((a,b), c) yields True if point x is in segment (a,b) and False otherwise. Note
    that this differs from point_on_segment in that a point that if c is equal to a or b it is
    considered 'on' but not 'in' the segment.
    The option atol can be given and is used only to test for difference from 0; by default it is
    1e-8.
    '''
    (a,c) = ac
    abc = [np.asarray(u) for u in (a,b,c)]
    if any(len(u.shape) > 1 for u in abc): (a,b,c) = [np.reshape(u,(len(u),-1)) for u in abc]
    else:                                  (a,b,c) = abc
    vab = b - a
    vbc = c - b
    vac = c - a
    dab = np.sqrt(np.sum(vab**2, axis=0))
    dbc = np.sqrt(np.sum(vbc**2, axis=0))
    dac = np.sqrt(np.sum(vac**2, axis=0))
    return (np.isclose(dab + dbc - dac, 0, atol=atol) &
            ~np.isclose(dac - dab, 0, atol=atol) &
            ~np.isclose(dac - dbc, 0, atol=atol)) 
开发者ID:noahbenson,项目名称:neuropythy,代码行数:23,代码来源:util.py

示例14: row_norms

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import reshape [as 别名]
def row_norms(ii, f=Ellipsis, squared=False):
    '''
    row_norms(ii) yields a potential function h(x) that calculates the vector norms of the rows of
      the matrix formed by [x[i] for i in ii] (ii is a matrix of parameter indices).
    row_norms(ii, f) yield a potential function h(x) equivalent to compose(row_norms(ii), f).
    '''
    try:
        (n,m) = ii
        # matrix shape given
        ii = np.reshape(np.arange(n*m), (n,m))
    except Exception: ii = np.asarray(ii)
    f = to_potential(f)
    if is_const_potential(f):
        q = flattest(f.c)
        q = np.sum([q[i]**2 for i in ii.T], axis=0)
        return PotentialConstant(q if squared else np.sqrt(q))
    F = reduce(lambda a,b: a + b, [part(Ellipsis, col)**2 for col in ii.T])
    F = compose(F, f)
    if not squared: F = sqrt(F)
    return F 
开发者ID:noahbenson,项目名称:neuropythy,代码行数:22,代码来源:core.py

示例15: col_norms

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import reshape [as 别名]
def col_norms(ii, f=Ellipsis, squared=False):
    '''
    col_norms(ii) yields a potential function h(x) that calculates the vector norms of the columns
      of the matrix formed by [x[i] for i in ii] (ii is a matrix of parameter indices).
    col_norms(ii, f) yield a potential function h(x) equivalent to compose(col_norms(ii), f).
    '''
    try:
        (n,m) = ii
        # matrix shape given
        ii = np.reshape(np.arange(n*m), (n,m))
    except Exception: ii = np.asarray(ii)
    f = to_potential(f)
    if is_const_potential(f):
        q = flattest(f.c)
        q = np.sum([q[i]**2 for i in ii], axis=0)
        return PotentialConstant(q if squared else np.sqrt(q))
    F = reduce(lambda a,b: a + b, [part(Ellipsis, col)**2 for col in ii])
    F = compose(F, f)
    if not squared: F = sqrt(F)
    return F 
开发者ID:noahbenson,项目名称:neuropythy,代码行数:22,代码来源:core.py


注:本文中的numpy.reshape方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。