本文整理汇总了Python中numpy.random.seed方法的典型用法代码示例。如果您正苦于以下问题:Python random.seed方法的具体用法?Python random.seed怎么用?Python random.seed使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy.random
的用法示例。
在下文中一共展示了random.seed方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _get_simulate_cmd
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import seed [as 别名]
def _get_simulate_cmd(self, directory_strains, filepath_genome, filepath_gff):
"""
Get system command to start simulation. Change directory to the strain directory and start simulating strains.
@param directory_strains: Directory for the simulated strains
@type directory_strains: str | unicode
@param filepath_genome: Genome to get simulated strains of
@type filepath_genome: str | unicode
@param filepath_gff: gff file with gene annotations
@type filepath_gff: str | unicode
@return: System command line
@rtype: str
"""
cmd_run_simujobrun = "cd {dir}; {executable} {filepath_genome} {filepath_gff} {seed}" + " >> {log}"
cmd = cmd_run_simujobrun.format(
dir=directory_strains,
executable=self._executable_sim,
filepath_genome=filepath_genome,
filepath_gff=filepath_gff,
seed=self._get_seed(),
log=os.path.join(directory_strains, os.path.basename(filepath_genome) + ".sim.log")
)
return cmd
示例2: test_np
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import seed [as 别名]
def test_np():
npr.seed(0)
nx, nineq, neq = 4, 6, 7
Q = npr.randn(nx, nx)
G = npr.randn(nineq, nx)
A = npr.randn(neq, nx)
D = np.diag(npr.rand(nineq))
K_ = np.bmat((
(Q, np.zeros((nx, nineq)), G.T, A.T),
(np.zeros((nineq, nx)), D, np.eye(nineq), np.zeros((nineq, neq))),
(G, np.eye(nineq), np.zeros((nineq, nineq + neq))),
(A, np.zeros((neq, nineq + nineq + neq)))
))
K = block((
(Q, 0, G.T, A.T),
(0, D, 'I', 0),
(G, 'I', 0, 0),
(A, 0, 0, 0)
))
assert np.allclose(K_, K)
示例3: get_grads
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import seed [as 别名]
def get_grads(nBatch=1, nz=10, neq=1, nineq=3, Qscale=1.,
Gscale=1., hscale=1., Ascale=1., bscale=1.):
assert(nBatch == 1)
npr.seed(1)
L = np.random.randn(nz, nz)
Q = Qscale * L.dot(L.T)
G = Gscale * npr.randn(nineq, nz)
# h = hscale*npr.randn(nineq)
z0 = npr.randn(nz)
s0 = npr.rand(nineq)
h = G.dot(z0) + s0
A = Ascale * npr.randn(neq, nz)
# b = bscale*npr.randn(neq)
b = A.dot(z0)
p = npr.randn(nBatch, nz)
# print(np.linalg.norm(p))
truez = npr.randn(nBatch, nz)
Q, p, G, h, A, b, truez = [x.astype(np.float64) for x in
[Q, p, G, h, A, b, truez]]
_, zhat, nu, lam, slacks = qp_cvxpy.forward_single_np(Q, p[0], G, h, A, b)
grads = get_grads_torch(Q, p, G, h, A, b, truez)
return [p[0], Q, G, h, A, b, truez], grads
示例4: test_imsave_color_alpha
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import seed [as 别名]
def test_imsave_color_alpha():
# Test that imsave accept arrays with ndim=3 where the third dimension is
# color and alpha without raising any exceptions, and that the data is
# acceptably preserved through a save/read roundtrip.
from numpy import random
random.seed(1)
data = random.rand(256, 128, 4)
buff = io.BytesIO()
plt.imsave(buff, data)
buff.seek(0)
arr_buf = plt.imread(buff)
# Recreate the float -> uint8 -> float32 conversion of the data
data = (255*data).astype('uint8').astype('float32')/255
# Wherever alpha values were rounded down to 0, the rgb values all get set
# to 0 during imsave (this is reasonable behaviour).
# Recreate that here:
for j in range(3):
data[data[:, :, 3] == 0, j] = 1
assert_array_equal(data, arr_buf)
示例5: test_next_opt_len
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import seed [as 别名]
def test_next_opt_len(self):
random.seed(1234)
def nums():
for j in range(1, 1000):
yield j
yield 2**5 * 3**5 * 4**5 + 1
for n in nums():
m = next_fast_len(n)
msg = "n=%d, m=%d" % (n, m)
assert_(m >= n, msg)
# check regularity
k = m
for d in [2, 3, 5]:
while True:
a, b = divmod(k, d)
if b == 0:
k = a
else:
break
assert_equal(k, 1, err_msg=msg)
示例6: test_hess_vector_prod
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import seed [as 别名]
def test_hess_vector_prod():
npr.seed(1)
randv = npr.randn(10)
def fun(x):
return np.sin(np.dot(x, randv))
df = grad(fun)
def vector_product(x, v):
return np.sin(np.dot(v, df(x)))
ddf = grad(vector_product)
A = npr.randn(10)
B = npr.randn(10)
check_grads(fun, A)
check_grads(vector_product, A, B)
# TODO:
# Grad three or more, wrt different args
# Diamond patterns
# Taking grad again after returning const
# Empty functions
# 2nd derivatives with fanout, thinking about the outgrad adder
示例7: test_returns
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import seed [as 别名]
def test_returns(self, seed_value, window_length):
returns = Returns(window_length=window_length)
today = datetime64(1, 'ns')
assets = arange(3)
out = empty((3,), dtype=float)
seed(seed_value) # Seed so we get deterministic results.
test_data = abs(randn(window_length, 3))
# Calculate the expected returns
expected = (test_data[-1] - test_data[0]) / test_data[0]
out = empty((3,), dtype=float)
returns.compute(today, assets, out, test_data)
check_allclose(expected, out)
示例8: _read_options
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import seed [as 别名]
def _read_options(self, options):
"""
Read passed arguments.
@rtype: None
"""
if not self._validator.validate_file(options.config_file, key='-c'):
self._valid_arguments = False
return
self._file_path_config = self._validator.get_full_path(options.config_file)
self._verbose = not options.silent
self._debug = options.debug_mode
self._phase = options.phase
self._dataset_id = options.data_set_id
self._max_processors = options.max_processors
self._seed = options.seed
# self._directory_output = options.output_directory
# self._sample_size_in_base_pairs = options.sample_size_gbp
# if self._sample_size_in_base_pairs is not None:
# self._sample_size_in_base_pairs = long(options.sample_size_gbp * self._base_pairs_multiplication_factor)
# self.read_simulator = options.read_simulator
# self._error_profile = options.error_profile
# self._fragment_size_standard_deviation_in_bp = options.fragment_size_standard_deviation
# self._fragments_size_mean_in_bp = options.fragments_size_mean
# self.plasmid_file = options.plasmid_file
# self._number_of_samples = options.number_of_samples
# self._phase_pooled_gsa = options.pooled_gsa
示例9: generate_input
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import seed [as 别名]
def generate_input(args):
global _log
_log = logger(verbose = args.debug)
np_rand.seed(args.seed)
#MAX_RANK = args.maxrank
config = ConfigParser()
config.read(args.config)
try:
max_strains = int(config.get("Main", max_strains_per_otu))
except:
max_strains = 3 # no max_strains have been set for this community - use cami value
_log.warning("Max strains per OTU not set, using default (3)")
try:
mu = int(config.get("Main", "log_mu"))
sigma = int(config.get("Main", "log_sigma"))
except:
mu = 1
sigma = 2 # this aint particularily beatiful
_log.warning("Mu and sigma have not been set, using defaults (1,2)") #TODO
tax_profile = read_taxonomic_profile(args.profile, config, args.samples)
genomes_map, total_genomes = read_genomes_list(args.reference_genomes, args.additional_references)
per_rank_map = get_genomes_per_rank(genomes_map, RANKS, MAX_RANK)
otu_genome_map, unmatched_otus, per_rank_map = map_otus_to_genomes(tax_profile, per_rank_map, RANKS, MAX_RANK, mu, sigma, max_strains, args.debug, args.no_replace, total_genomes)
if (args.fill_up and len(unmatched_otus) > 0):
otu_genome_map = fill_up_genomes(otu_genome_map, unmatched_otus, per_rank_map, tax_profile, args.debug)
cfg_path = write_config(otu_genome_map, genomes_map, args.o, config)
_log.info("Community design finished")
_log = None
return cfg_path
示例10: setup_tensorflow
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import seed [as 别名]
def setup_tensorflow():
# Create session
config = tf.ConfigProto(log_device_placement=FLAGS.log_device_placement)
sess = tf.Session(config=config)
# Initialize rng with a deterministic seed
with sess.graph.as_default():
tf.set_random_seed(FLAGS.random_seed)
random.seed(FLAGS.random_seed)
np.random.seed(FLAGS.random_seed)
summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, sess.graph)
return sess, summary_writer
示例11: test_linear_operator
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import seed [as 别名]
def test_linear_operator():
npr.seed(0)
nx, nineq, neq = 4, 6, 7
Q = npr.randn(nx, nx)
G = npr.randn(nineq, nx)
A = npr.randn(neq, nx)
D = np.diag(npr.rand(nineq))
K_ = np.bmat((
(Q, np.zeros((nx, nineq)), G.T, A.T),
(np.zeros((nineq, nx)), D, np.eye(nineq), np.zeros((nineq, neq))),
(G, np.eye(nineq), np.zeros((nineq, nineq + neq))),
(A, np.zeros((neq, nineq + nineq + neq)))
))
Q_lo = sla.aslinearoperator(Q)
G_lo = sla.aslinearoperator(G)
A_lo = sla.aslinearoperator(A)
D_lo = sla.aslinearoperator(D)
K = block((
(Q_lo, 0, G.T, A.T),
(0, D_lo, 'I', 0),
(G_lo, 'I', 0, 0),
(A_lo, 0, 0, 0)
), arrtype=sla.LinearOperator)
w1 = np.random.randn(K_.shape[1])
assert np.allclose(K_.dot(w1), K.dot(w1))
w2 = np.random.randn(K_.shape[0])
assert np.allclose(K_.T.dot(w2), K.H.dot(w2))
W = np.random.randn(*K_.shape)
assert np.allclose(K_.dot(W), K.dot(W))
示例12: _random_array
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import seed [as 别名]
def _random_array(shape, random_seed=10): # type: (Tuple[int, ...], Any) -> np._ArrayLike[float]
if random_seed:
npr.seed(random_seed) # type: ignore
return npr.ranf(shape).astype("float32")
示例13: setup_class
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import seed [as 别名]
def setup_class(cls):
R.seed(54321)
cls.X = R.standard_normal((40,10))
示例14: logistic_regression_chain
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import seed [as 别名]
def logistic_regression_chain(x, t, N_iter=100, stepsize=1, th0=1, q=0.1, y0=1, seed=None):
# Set seed
npr.seed(seed)
# Obtain joint distributions over z and th and set step functions
model = ff.LogisticModel(x, t, th0=th0, y0=y0)
z__stepper = ff.zStepMH(model.log_pseudo_lik , q)
th_stepper = ff.ThetaStepMH(model.log_p_joint, stepsize)
# Initialize
N, D = x.shape
th = np.random.randn(D)*th0
z = ff.BrightnessVars(N)
# run chain
th_chain = np.zeros((N_iter, ) + th.shape)
z_chain = np.zeros((N_iter, N), dtype=bool)
for i in range(N_iter):
th = th_stepper.step(th, z)
z = z__stepper.step(th ,z)
# Record the intermediate results
th_chain[i,:] = th.copy()
z_chain[i,z.bright] = 1
print "th0 = ", th0, "frac accepted is", th_stepper.frac_accepted, "bright frac is:", np.mean(z_chain)
return th_chain, z_chain
示例15: main
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import seed [as 别名]
def main(args):
print args
if args.seed >= 0:
seed = args.seed
else:
seed = int(time.time()*1000) % 9999
print "seed:", seed
random.seed(seed)
model = None
if args.train:
vocabx, vocaby = Pipe.create_vocabulary(args)
if args.embedding:
vocabx, embeddings = Pipe.load_embeddings(args)
train_x, train_y = Pipe.read_corpus(args.train, args, vocabx, vocaby)
if args.dev:
dev_x, dev_y = Pipe.read_corpus(args.dev, args, vocabx, vocaby)
if args.test:
test_x, test_y = Pipe.read_corpus(args.test, args, vocabx, vocaby)
model = ConvModel(
args = args,
vocabx = vocabx,
vocaby = vocaby
)
model.ready( embeddings if args.embedding else None )
model.train(
(train_x, train_y),
(dev_x, dev_y) if args.dev else None,
(test_x, test_y) if args.test else None,
)