当前位置: 首页>>代码示例>>Python>>正文


Python random.random_sample方法代码示例

本文整理汇总了Python中numpy.random.random_sample方法的典型用法代码示例。如果您正苦于以下问题:Python random.random_sample方法的具体用法?Python random.random_sample怎么用?Python random.random_sample使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy.random的用法示例。


在下文中一共展示了random.random_sample方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_numpy_inverse

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import random_sample [as 别名]
def test_numpy_inverse(self, dim):
        self.query(dedent('''\
                CREATE EXTERNAL SCALAR SCRIPT
                numpy(dim INTEGER)
                RETURNS boolean AS
                # redirector @@redirector_url@@

                from numpy import *
                from numpy.linalg import inv
                from numpy.random import seed, random_sample

                def run(ctx):
                    dim = ctx.dim
                    seed(12345678 * dim)
                    A = random_sample((dim, dim))
                    Ai = inv(A)
                    R = dot(A, Ai) - identity(dim)
                    return bool(-1e-12 <= R.min() <= R.max() <= 1e-12)
                '''))
        rows = self.query('SELECT numpy(?) FROM dual', dim)
        self.assertRowsEqual([(True,)], rows) 
开发者ID:exasol,项目名称:script-languages,代码行数:23,代码来源:external_modules.py

示例2: test_numpy_inverse

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import random_sample [as 别名]
def test_numpy_inverse(self, dim):
        self.query(dedent('''\
                CREATE python SCALAR SCRIPT
                numpy(dim INTEGER)
                RETURNS boolean AS

                from numpy import *
                from numpy.linalg import inv
                from numpy.random import seed, random_sample

                def run(ctx):
                    dim = ctx.dim
                    seed(12345678 * dim)
                    A = random_sample((dim, dim))
                    Ai = inv(A)
                    R = dot(A, Ai) - identity(dim)
                    return bool(-1e-12 <= R.min() <= R.max() <= 1e-12)
                '''))
        rows = self.query('SELECT numpy(?) FROM dual', dim)
        self.assertRowsEqual([(True,)], rows) 
开发者ID:exasol,项目名称:script-languages,代码行数:22,代码来源:external_modules.py

示例3: test_numpy_inverse

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import random_sample [as 别名]
def test_numpy_inverse(self, dim):
        self.query(dedent('''\
                CREATE python3 SCALAR SCRIPT
                numpy(dim INTEGER)
                RETURNS boolean AS

                from numpy import *
                from numpy.linalg import inv
                from numpy.random import seed, random_sample

                def run(ctx):
                    dim = ctx.dim
                    seed(12345678 * dim)
                    A = random_sample((dim, dim))
                    Ai = inv(A)
                    R = dot(A, Ai) - identity(dim)
                    return bool(-1e-12 <= R.min() <= R.max() <= 1e-12)
                '''))
        rows = self.query('SELECT numpy(?) FROM dual', dim)
        self.assertRowsEqual([(True,)], rows) 
开发者ID:exasol,项目名称:script-languages,代码行数:22,代码来源:external_modules.py

示例4: test_fixed_seed_outcomes

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import random_sample [as 别名]
def test_fixed_seed_outcomes():
    """
    Tests if fixing a seed results in deterministic outcomes even when using a
    'random' acceptance criterion (here SA).
    """
    outcomes = [0.01171, 0.00011, 0.01025]

    for seed, desired in enumerate(outcomes):                   # idx is seed
        alns = get_alns_instance(
            [lambda state, rnd: ValueState(rnd.random_sample())],
            [lambda state, rnd: None],
            seed)

        simulated_annealing = SimulatedAnnealing(1, .25, 1 / 100)

        result = alns.iterate(One(), [1, 1, 1, 1], .5, simulated_annealing, 100)

        assert_almost_equal(result.best_state.objective(), desired, decimal=5)

# TODO test more complicated examples? 
开发者ID:N-Wouda,项目名称:ALNS,代码行数:22,代码来源:test_alns.py

示例5: setup

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import random_sample [as 别名]
def setup():
    global source
    global target
    source = []
    for i in range(13):
        if random() < 0.5:
            source = concatenate((source, random(CHUNK_SIZE_RANDOM)))
        else:
            source = concatenate((source, zeros(CHUNK_SIZE_ZEROS, 'f')))
    source = source.astype('f')
    # Set on target
    target = BinnedArray(128, NaN, len(source))
    for i in range(len(source)):
        # if not isNaN( source[i] ):
        target[i] = source[i]
    return source, target 
开发者ID:bxlab,项目名称:bx-python,代码行数:18,代码来源:binned_array_tests.py

示例6: test_file_lzo

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import random_sample [as 别名]
def test_file_lzo():
    # With a file (lzo)
    target.to_file(open("/tmp/foo3", "wb"), comp_type="lzo")
    target3 = FileBinnedArray(open("/tmp/foo3", 'rb'))
    # Verify
    for i in range(len(source)):
        assert source[i] == target3[i], "No match, index: %d, source: %d, target: %d" % (i, source[i], target3[i])
    # Verify with slices
    target3 = FileBinnedArray(open("/tmp/foo3", 'rb'))
    for i in range(10):
        a = int(random() * len(source))
        b = int(random() * len(source))
        if b < a:
            a, b = b, a
        assert allclose(source[a:b], target3[a:b]), "No match, index: %d:%d, source: %s, target: %s" % \
            (a, b, ",".join(map(str, source[a:a+10])), ",".join(map(str, target3[a:a+10]))) 
开发者ID:bxlab,项目名称:bx-python,代码行数:18,代码来源:binned_array_tests.py

示例7: pytest_generate_tests

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import random_sample [as 别名]
def pytest_generate_tests(metafunc):
    if "diagonal_property" in metafunc.fixturenames:
        metafunc.parametrize("diagonal_property", DIAGONAL_PROPERTIES)
    elif "edge_name" in metafunc.fixturenames:
        metafunc.parametrize("edge_name", EDGE_NAMES)
    elif "graph_element" in metafunc.fixturenames:
        metafunc.parametrize("graph_element", GRAPH_ELEMENTS)
    elif "field_dtype" in metafunc.fixturenames:
        metafunc.parametrize("field_dtype", FIELD_DTYPES)
    elif "random_xy" in metafunc.fixturenames:
        from numpy.random import random_sample

        metafunc.parametrize(
            "random_xy",
            (
                tuple(-1e3 * random_sample(2)),
                tuple(1e3 * random_sample(2)),
                tuple(1e3 * (random_sample(2) - 0.5)),
            ),
        ) 
开发者ID:landlab,项目名称:landlab,代码行数:22,代码来源:conftest.py

示例8: _compute_vectorized

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import random_sample [as 别名]
def _compute_vectorized(self, args, y):

        random_values = random_sample(args.index.shape[0])

        if self.a != 0.0 or self.b != 1.0:
            random_values = (self.b - self.a) * random_values + self.a

        return random_values 
开发者ID:J535D165,项目名称:recordlinkage,代码行数:10,代码来源:random.py

示例9: randwppf

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import random_sample [as 别名]
def randwppf(ppf, args=(), size=None):
    """
    returns an array of randomly distributed integers of a distribution
    whose percent point function (inverse of the CDF or quantile function)
    is given.

    args is a tuple of extra arguments to the ppf function (i.e. shape,
    location, scale), and size is the size of the output.  Note the ppf
    function must accept an array of q values to compute over.

    """
    U = random_sample(size=size)
    return ppf(*(U,)+args) 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:15,代码来源:rv.py

示例10: corrupt_image

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import random_sample [as 别名]
def corrupt_image(img, MAR_prob=0, min_rects=0, max_rects=0, min_width=0, max_width=0, apply_to_all_channels=False):
    def generate_channel_mask():
        mask = np.zeros(img.shape[0:2], dtype=np.bool)
        if MAR_prob > 0:
            mask[(random_sample(mask.shape) < MAR_prob)] = True
        if max_rects > 0 and max_width > 0:
            h, w = mask.shape
            num_rects = random_integers(min_rects, max_rects)
            for i in range(num_rects):
                px1 = random_integers(0, w - min(max(min_width, 1), w))
                py1 = random_integers(0, h - min(max(min_width, 1), h))
                px2 = px1 + min_width + random_integers(0, max(min(w - px1 - min_width, max_width - min_width), 0));
                py2 = py1 + min_width + random_integers(0, max(min(h - py1 - min_width, max_width - min_width), 0));
                if px1 <= px2 and py1 <= py2:
                    mask[py1:py2, px1:px2] = True
                else:
                    # One of the sides has length 0, so we should remove any pixels4
                    pass
        return mask
    new_img = img.copy()
    channels = 1 if len(new_img.shape) == 2 else new_img.shape[-1]
    global_mask = np.zeros(img.shape, dtype=np.bool)
    if channels == 1 or apply_to_all_channels:
        mask = generate_channel_mask()
        if channels == 1:
            global_mask[:, :] = mask
        else:
            for i in xrange(channels):
                global_mask[:, :, i] = mask
    else:
        global_mask = np.zeros(img.shape, dtype=np.bool)
        for i in xrange(channels):
            global_mask[:,:,i] = generate_channel_mask()
    new_img[global_mask] = 0
    return (new_img, 1.0 * global_mask)

# Process command line inputs 
开发者ID:HUJI-Deep,项目名称:Generative-ConvACs,代码行数:39,代码来源:generate_missing_data.py

示例11: sample

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import random_sample [as 别名]
def sample(values, probabilities, size):
    assert np.allclose(np.sum(probabilities, axis=-1), 1.0)
    bins = np.add.accumulate(probabilities)
    return values[np.digitize(random_sample(size), bins)] 
开发者ID:cemoody,项目名称:lda2vec,代码行数:6,代码来源:fake_data.py

示例12: _random_float

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import random_sample [as 别名]
def _random_float(self, a, b):
        return (b - a) * random_sample() + a 
开发者ID:alykhantejani,项目名称:nninit,代码行数:4,代码来源:tests.py

示例13: test_simple

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import random_sample [as 别名]
def test_simple():
    # Verify
    for i in range(len(source)):
        assert source[i] == target[i], "No match, index: %d, source: %f, target: %f, len( source ): %d" % (i, source[i], target[i], len(source))
    # Verify with slices
    for i in range(10):
        a = int(random() * len(source))
        b = int(random() * len(source))
        if b < a:
            a, b = b, a
        assert allclose(source[a:b], target[a:b]), "No match, index: %d:%d, source: %s, target: %s" % \
            (a, b, ",".join(map(str, source[a:a+10])), ",".join(map(str, target[a:a+10]))) 
开发者ID:bxlab,项目名称:bx-python,代码行数:14,代码来源:binned_array_tests.py

示例14: test_file

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import random_sample [as 别名]
def test_file():
    # With a file (zlib)
    target.to_file(open("/tmp/foo", "wb"))
    target2 = FileBinnedArray(open("/tmp/foo", 'rb'))
    for i in range(len(source)):
        assert source[i] == target2[i], "No match, index: %d, source: %d, target: %d" % (i, source[i], target2[i])
    # Verify with slices
    target2 = FileBinnedArray(open("/tmp/foo", 'rb'))
    for i in range(10):
        a = int(random() * len(source))
        b = int(random() * len(source))
        if b < a:
            a, b = b, a
        assert allclose(source[a:b], target[a:b]), "No match, index: %d:%d, source: %s, target: %s" % \
            (a, b, ",".join(map(str, source[a:a+10])), ",".join(map(str, target2[a:a+10]))) 
开发者ID:bxlab,项目名称:bx-python,代码行数:17,代码来源:binned_array_tests.py

示例15: wolfe_line_search

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import random_sample [as 别名]
def wolfe_line_search(self, fun, search_dir, curr_value, exp_decrease) :
		"""
		see Numerical Optimization,
		Nocedal and Wright, Algorithm 3.5, p. 60
		"""
		f =  lambda t : fun(self.after_step(t * search_dir))[0]
		fp = lambda t : self.scal_L2(fun(self.after_step(t * search_dir))[1], search_dir).Q0
		exit_code = 0 # Default : everything is all right
		
		
		# Code to uncomment to check that fp is the true derivative of f========
		h = 1e-8
		for i in range(5) :
			t = random_sample()
			update_th = fp(t)
			update_emp = (f(t+h) - f(t-h)) / (2*h)
			print('')
			print('search dir : ', search_dir.to_array())
			print('Checking the function passed to the Wolfe line search, t = ', t)
			print('Empirical   derivative : ', update_emp)
			print('Theoretical derivative : ', update_th)
		
		#=======================================================================
		
		
		
		print("Exp decrease : ", exp_decrease)
		(a, _, _, _, _, _) = line_search(f, fp, 0, 1, exp_decrease, curr_value, c2 = 0.95)
		if a == None :
			print('Error during the wolfe line search')
			a = 0
			exit_code = 1 # Exit_code = 1 : break !
		step = a * search_dir
		new_state = self.after_step(step)
		self.set_state(new_state)
		#self.current_cost_grad = (C,grad)
		#self.is_current_cost_computed = True
		self.is_current_point_computed = False
		return (step, exit_code) 
开发者ID:jeanfeydy,项目名称:lddmm-ot,代码行数:41,代码来源:model.py


注:本文中的numpy.random.random_sample方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。