当前位置: 首页>>代码示例>>Python>>正文


Python random.randint方法代码示例

本文整理汇总了Python中numpy.random.randint方法的典型用法代码示例。如果您正苦于以下问题:Python random.randint方法的具体用法?Python random.randint怎么用?Python random.randint使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy.random的用法示例。


在下文中一共展示了random.randint方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: random_select

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import randint [as 别名]
def random_select(img_scales):
        """Randomly select an img_scale from given candidates.

        Args:
            img_scales (list[tuple]): Images scales for selection.

        Returns:
            (tuple, int): Returns a tuple ``(img_scale, scale_dix)``,
                where ``img_scale`` is the selected image scale and
                ``scale_idx`` is the selected index in the given candidates.
        """

        assert mmcv.is_list_of(img_scales, tuple)
        scale_idx = np.random.randint(len(img_scales))
        img_scale = img_scales[scale_idx]
        return img_scale, scale_idx 
开发者ID:open-mmlab,项目名称:mmdetection,代码行数:18,代码来源:transforms.py

示例2: random_sample

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import randint [as 别名]
def random_sample(img_scales):
        """Randomly sample an img_scale when ``multiscale_mode=='range'``.

        Args:
            img_scales (list[tuple]): Images scale range for sampling.
                There must be two tuples in img_scales, which specify the lower
                and uper bound of image scales.

        Returns:
            (tuple, None): Returns a tuple ``(img_scale, None)``, where
                ``img_scale`` is sampled scale and None is just a placeholder
                to be consistent with :func:`random_select`.
        """

        assert mmcv.is_list_of(img_scales, tuple) and len(img_scales) == 2
        img_scale_long = [max(s) for s in img_scales]
        img_scale_short = [min(s) for s in img_scales]
        long_edge = np.random.randint(
            min(img_scale_long),
            max(img_scale_long) + 1)
        short_edge = np.random.randint(
            min(img_scale_short),
            max(img_scale_short) + 1)
        img_scale = (long_edge, short_edge)
        return img_scale, None 
开发者ID:open-mmlab,项目名称:mmdetection,代码行数:27,代码来源:transforms.py

示例3: sample

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import randint [as 别名]
def sample(self, batch_size):
    """
    computes (x_t,u_t,x_{t+1}) pair
    returns tuple of 3 ndarrays with shape
    (batch,x_dim), (batch, u_dim), (batch, x_dim)
    """
    if not self.initialized:
      raise ValueError("Dataset not loaded - call PlaneData.initialize() first.")
    traj=randint(0,num_t,size=batch_size) # which trajectory
    tt=randint(0,T-1,size=batch_size) # time step t for each batch
    X0=np.zeros((batch_size,x_dim))
    U0=np.zeros((batch_size,u_dim),dtype=np.int)
    X1=np.zeros((batch_size,x_dim))
    for i in range(batch_size):
      t=tt[i]
      p=self.P[traj[i], t, :]
      X0[i,:]=self.getX(traj[i],t)
      X1[i,:]=self.getX(traj[i],t+1)
      U0[i,:]=self.U[traj[i], t, :]
    return (X0,U0,X1) 
开发者ID:ericjang,项目名称:e2c,代码行数:22,代码来源:plane_data2.py

示例4: test_count_nonzero_axis_consistent

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import randint [as 别名]
def test_count_nonzero_axis_consistent(self):
        # Check that the axis behaviour for valid axes in
        # non-special cases is consistent (and therefore
        # correct) by checking it against an integer array
        # that is then casted to the generic object dtype
        from itertools import combinations, permutations

        axis = (0, 1, 2, 3)
        size = (5, 5, 5, 5)
        msg = "Mismatch for axis: %s"

        rng = np.random.RandomState(1234)
        m = rng.randint(-100, 100, size=size)
        n = m.astype(object)

        for length in range(len(axis)):
            for combo in combinations(axis, length):
                for perm in permutations(combo):
                    assert_equal(
                        np.count_nonzero(m, axis=perm),
                        np.count_nonzero(n, axis=perm),
                        err_msg=msg % (perm,)) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:24,代码来源:test_numeric.py

示例5: test_frame_negate

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import randint [as 别名]
def test_frame_negate(self):
        expr = self.ex('-')

        # float
        lhs = DataFrame(randn(5, 2))
        expect = -lhs
        result = pd.eval(expr, engine=self.engine, parser=self.parser)
        assert_frame_equal(expect, result)

        # int
        lhs = DataFrame(randint(5, size=(5, 2)))
        expect = -lhs
        result = pd.eval(expr, engine=self.engine, parser=self.parser)
        assert_frame_equal(expect, result)

        # bool doesn't work with numexpr but works elsewhere
        lhs = DataFrame(rand(5, 2) > 0.5)
        if self.engine == 'numexpr':
            with pytest.raises(NotImplementedError):
                result = pd.eval(expr, engine=self.engine, parser=self.parser)
        else:
            expect = -lhs
            result = pd.eval(expr, engine=self.engine, parser=self.parser)
            assert_frame_equal(expect, result) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:26,代码来源:test_eval.py

示例6: test_series_negate

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import randint [as 别名]
def test_series_negate(self):
        expr = self.ex('-')

        # float
        lhs = Series(randn(5))
        expect = -lhs
        result = pd.eval(expr, engine=self.engine, parser=self.parser)
        assert_series_equal(expect, result)

        # int
        lhs = Series(randint(5, size=5))
        expect = -lhs
        result = pd.eval(expr, engine=self.engine, parser=self.parser)
        assert_series_equal(expect, result)

        # bool doesn't work with numexpr but works elsewhere
        lhs = Series(rand(5) > 0.5)
        if self.engine == 'numexpr':
            with pytest.raises(NotImplementedError):
                result = pd.eval(expr, engine=self.engine, parser=self.parser)
        else:
            expect = -lhs
            result = pd.eval(expr, engine=self.engine, parser=self.parser)
            assert_series_equal(expect, result) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:26,代码来源:test_eval.py

示例7: test_series_pos

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import randint [as 别名]
def test_series_pos(self):
        expr = self.ex('+')

        # float
        lhs = Series(randn(5))
        expect = lhs
        result = pd.eval(expr, engine=self.engine, parser=self.parser)
        assert_series_equal(expect, result)

        # int
        lhs = Series(randint(5, size=5))
        expect = lhs
        result = pd.eval(expr, engine=self.engine, parser=self.parser)
        assert_series_equal(expect, result)

        # bool doesn't work with numexpr but works elsewhere
        lhs = Series(rand(5) > 0.5)
        expect = lhs
        result = pd.eval(expr, engine=self.engine, parser=self.parser)
        assert_series_equal(expect, result) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:22,代码来源:test_eval.py

示例8: test_identity_module

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import randint [as 别名]
def test_identity_module(self):
        """ identity module should preserve input """

        with IsolatedSession() as issn:
            pred_input = tf.placeholder(tf.float32, [None, None])
            final_output = tf.identity(pred_input, name='output')
            gfn = issn.asGraphFunction([pred_input], [final_output])

        for _ in range(10):
            m, n = prng.randint(10, 1000, size=2)
            mat = prng.randn(m, n).astype(np.float32)
            with IsolatedSession() as issn:
                feeds, fetches = issn.importGraphFunction(gfn)
                mat_out = issn.run(fetches[0], {feeds[0]: mat})

            self.assertTrue(np.all(mat_out == mat)) 
开发者ID:databricks,项目名称:spark-deep-learning,代码行数:18,代码来源:test_pieces.py

示例9: _sample_indices

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import randint [as 别名]
def _sample_indices(self, record):
        """

        :param record: VideoRecord
        :return: list
        """
        if self.dense_sample:  # i3d dense sample
            sample_pos = max(1, 1 + record.num_frames - 64)
            t_stride = 64 // self.num_segments
            start_idx = 0 if sample_pos == 1 else np.random.randint(0, sample_pos - 1)
            offsets = [(idx * t_stride + start_idx) % record.num_frames for idx in range(self.num_segments)]
            return np.array(offsets) + 1
        else:  # normal sample
            average_duration = (record.num_frames - self.new_length + 1) // self.num_segments
            if average_duration > 0:
                offsets = np.multiply(list(range(self.num_segments)), average_duration) + randint(average_duration,
                                                                                                  size=self.num_segments)
            elif record.num_frames > self.num_segments:
                offsets = np.sort(randint(record.num_frames - self.new_length + 1, size=self.num_segments))
            else:
                offsets = np.zeros((self.num_segments,))
            return offsets + 1 
开发者ID:CMU-CREATE-Lab,项目名称:deep-smoke-machine,代码行数:24,代码来源:dataset.py

示例10: resample

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import randint [as 别名]
def resample(self, size=None):
        """
        Randomly sample a dataset from the estimated pdf.

        Parameters
        ----------
        size : int, optional
            The number of samples to draw.  If not provided, then the size is
            the same as the underlying dataset.

        Returns
        -------
        resample : (self.d, `size`) ndarray
            The sampled dataset.

        """
        if size is None:
            size = self.n

        norm = transpose(multivariate_normal(zeros((self.d,), float),
                         self.covariance, size=size))
        indices = randint(0, self.n, size=size)
        means = self.dataset[:, indices]

        return means + norm 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:27,代码来源:kde.py

示例11: _get_glyph

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import randint [as 别名]
def _get_glyph(gnum, height, width, shift_prob, shift_size):
  if isinstance(gnum, list):
    n = randint(*gnum)
  else:
    n = gnum

  glyph = random_points_in_circle(
      n, 0, 0, 0.5
      )*array((width, height), 'float')
  _spatial_sort(glyph)

  if random()<shift_prob:
    shift = ((-1)**randint(0,2))*shift_size*height
    glyph[:,1] += shift
  if random()<0.5:
    ii = randint(0,n-1,size=(1))
    xy = glyph[ii,:]
    glyph = row_stack((glyph, xy))


  return glyph 
开发者ID:inconvergent,项目名称:sand-glyphs,代码行数:23,代码来源:glyphs.py

示例12: rand_shape_2d

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import randint [as 别名]
def rand_shape_2d(dim0=10, dim1=10):
    return rnd.randint(1, dim0 + 1), rnd.randint(1, dim1 + 1) 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:4,代码来源:test_utils.py

示例13: rand_shape_3d

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import randint [as 别名]
def rand_shape_3d(dim0=10, dim1=10, dim2=10):
    return rnd.randint(1, dim0 + 1), rnd.randint(1, dim1 + 1), rnd.randint(1, dim2 + 1) 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:4,代码来源:test_utils.py

示例14: rand_shape_nd

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import randint [as 别名]
def rand_shape_nd(num_dim, dim=10):
    return tuple(rnd.randint(1, dim+1, size=num_dim)) 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:4,代码来源:test_utils.py

示例15: test_sparse_nd_slice

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import randint [as 别名]
def test_sparse_nd_slice():
    shape = (rnd.randint(2, 10), rnd.randint(2, 10))
    stype = 'csr'
    A, _ = rand_sparse_ndarray(shape, stype)
    A2 = A.asnumpy()
    start = rnd.randint(0, shape[0] - 1)
    end = rnd.randint(start + 1, shape[0])
    assert same(A[start:end].asnumpy(), A2[start:end])
    assert same(A[start - shape[0]:end].asnumpy(), A2[start:end])
    assert same(A[start:].asnumpy(), A2[start:])
    assert same(A[:end].asnumpy(), A2[:end])
    ind = rnd.randint(-shape[0], shape[0] - 1)
    assert same(A[ind].asnumpy(), A2[ind][np.newaxis, :])

    start_col = rnd.randint(0, shape[1] - 1)
    end_col = rnd.randint(start_col + 1, shape[1])
    result = mx.nd.slice(A, begin=(start, start_col), end=(end, end_col))
    result_dense = mx.nd.slice(mx.nd.array(A2), begin=(start, start_col), end=(end, end_col))
    assert same(result_dense.asnumpy(), result.asnumpy())

    A = mx.nd.sparse.zeros('csr', shape)
    A2 = A.asnumpy()
    assert same(A[start:end].asnumpy(), A2[start:end])
    result = mx.nd.slice(A, begin=(start, start_col), end=(end, end_col))
    result_dense = mx.nd.slice(mx.nd.array(A2), begin=(start, start_col), end=(end, end_col))
    assert same(result_dense.asnumpy(), result.asnumpy())

    def check_slice_nd_csr_fallback(shape):
        stype = 'csr'
        A, _ = rand_sparse_ndarray(shape, stype)
        A2 = A.asnumpy()
        start = rnd.randint(0, shape[0] - 1)
        end = rnd.randint(start + 1, shape[0])

        # non-trivial step should fallback to dense slice op
        result = mx.nd.sparse.slice(A, begin=(start,), end=(end + 1,), step=(2,))
        result_dense = mx.nd.slice(mx.nd.array(A2), begin=(start,), end=(end + 1,), step=(2,))
        assert same(result_dense.asnumpy(), result.asnumpy())

    shape = (rnd.randint(2, 10), rnd.randint(1, 10))
    check_slice_nd_csr_fallback(shape) 
开发者ID:awslabs,项目名称:dynamic-training-with-apache-mxnet-on-aws,代码行数:43,代码来源:test_sparse_ndarray.py


注:本文中的numpy.random.randint方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。