本文整理汇总了Python中numpy.random.rand方法的典型用法代码示例。如果您正苦于以下问题:Python random.rand方法的具体用法?Python random.rand怎么用?Python random.rand使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy.random
的用法示例。
在下文中一共展示了random.rand方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: mi
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import rand [as 别名]
def mi(x, y, k=3, base=2):
"""Mutual information of x and y.
x,y should be a list of vectors, e.g. x = [[1.3], [3.7], [5.1], [2.4]]
if x is a one-dimensional scalar and we have four samples.
"""
assert len(x)==len(y), 'Lists should have same length.'
assert k <= len(x) - 1, 'Set k smaller than num samples - 1.'
intens = 1e-10 # Small noise to break degeneracy, see doc.
x = [list(p + intens*nr.rand(len(x[0]))) for p in x]
y = [list(p + intens*nr.rand(len(y[0]))) for p in y]
points = zip2(x,y)
# Find nearest neighbors in joint space, p=inf means max-norm.
tree = ss.cKDTree(points)
dvec = [tree.query(point, k+1, p=float('inf'))[0][k] for point in points]
a = avgdigamma(x,dvec)
b = avgdigamma(y,dvec)
c = digamma(k)
d = digamma(len(x))
return (-a-b+c+d) / log(base)
示例2: cmi
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import rand [as 别名]
def cmi(x, y, z, k=3, base=2):
"""Mutual information of x and y, conditioned on z
x,y,z should be a list of vectors, e.g. x = [[1.3], [3.7], [5.1], [2.4]]
if x is a one-dimensional scalar and we have four samples
"""
assert len(x)==len(y), 'Lists should have same length.'
assert k <= len(x) - 1, 'Set k smaller than num samples - 1.'
intens = 1e-10 # Small noise to break degeneracy, see doc.
x = [list(p + intens*nr.rand(len(x[0]))) for p in x]
y = [list(p + intens*nr.rand(len(y[0]))) for p in y]
z = [list(p + intens*nr.rand(len(z[0]))) for p in z]
points = zip2(x,y,z)
# Find nearest neighbors in joint space, p=inf means max-norm.
tree = ss.cKDTree(points)
dvec = [tree.query(point, k+1, p=float('inf'))[0][k] for point in points]
a = avgdigamma(zip2(x,z), dvec)
b = avgdigamma(zip2(y,z), dvec)
c = avgdigamma(z,dvec)
d = digamma(k)
return (-a-b+c+d) / log(base)
示例3: test_basic
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import rand [as 别名]
def test_basic(self):
y1 = np.array([1, 2, 3])
assert_(average(y1, axis=0) == 2.)
y2 = np.array([1., 2., 3.])
assert_(average(y2, axis=0) == 2.)
y3 = [0., 0., 0.]
assert_(average(y3, axis=0) == 0.)
y4 = np.ones((4, 4))
y4[0, 1] = 0
y4[1, 0] = 2
assert_almost_equal(y4.mean(0), average(y4, 0))
assert_almost_equal(y4.mean(1), average(y4, 1))
y5 = rand(5, 5)
assert_almost_equal(y5.mean(0), average(y5, 0))
assert_almost_equal(y5.mean(1), average(y5, 1))
示例4: test_argequivalent
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import rand [as 别名]
def test_argequivalent(self):
""" Test it translates from arg<func> to <func> """
from numpy.random import rand
a = rand(3, 4, 5)
funcs = [
(np.sort, np.argsort, dict()),
(_add_keepdims(np.min), _add_keepdims(np.argmin), dict()),
(_add_keepdims(np.max), _add_keepdims(np.argmax), dict()),
(np.partition, np.argpartition, dict(kth=2)),
]
for func, argfunc, kwargs in funcs:
for axis in list(range(a.ndim)) + [None]:
a_func = func(a, axis=axis, **kwargs)
ai_func = argfunc(a, axis=axis, **kwargs)
assert_equal(a_func, take_along_axis(a, ai_func, axis=axis))
示例5: test_basic
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import rand [as 别名]
def test_basic(self):
from numpy.random import rand
a = rand(20, 10, 10, 1, 1)
b = rand(20, 1, 10, 1, 20)
c = rand(1, 1, 20, 10)
assert_array_equal(np.squeeze(a), np.reshape(a, (20, 10, 10)))
assert_array_equal(np.squeeze(b), np.reshape(b, (20, 10, 20)))
assert_array_equal(np.squeeze(c), np.reshape(c, (20, 10)))
# Squeezing to 0-dim should still give an ndarray
a = [[[1.5]]]
res = np.squeeze(a)
assert_equal(res, 1.5)
assert_equal(res.ndim, 0)
assert_equal(type(res), np.ndarray)
示例6: test_subplots_dup_columns
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import rand [as 别名]
def test_subplots_dup_columns(self):
# GH 10962
df = DataFrame(np.random.rand(5, 5), columns=list('aaaaa'))
axes = df.plot(subplots=True)
for ax in axes:
self._check_legend_labels(ax, labels=['a'])
assert len(ax.lines) == 1
tm.close()
axes = df.plot(subplots=True, secondary_y='a')
for ax in axes:
# (right) is only attached when subplots=False
self._check_legend_labels(ax, labels=['a'])
assert len(ax.lines) == 1
tm.close()
ax = df.plot(secondary_y='a')
self._check_legend_labels(ax, labels=['a (right)'] * 5)
assert len(ax.lines) == 0
assert len(ax.right_ax.lines) == 5
示例7: test_line_lim
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import rand [as 别名]
def test_line_lim(self):
df = DataFrame(rand(6, 3), columns=['x', 'y', 'z'])
ax = df.plot()
xmin, xmax = ax.get_xlim()
lines = ax.get_lines()
assert xmin <= lines[0].get_data()[0][0]
assert xmax >= lines[0].get_data()[0][-1]
ax = df.plot(secondary_y=True)
xmin, xmax = ax.get_xlim()
lines = ax.get_lines()
assert xmin <= lines[0].get_data()[0][0]
assert xmax >= lines[0].get_data()[0][-1]
axes = df.plot(secondary_y=True, subplots=True)
self._check_axes_shape(axes, axes_num=3, layout=(3, 1))
for ax in axes:
assert hasattr(ax, 'left_ax')
assert not hasattr(ax, 'right_ax')
xmin, xmax = ax.get_xlim()
lines = ax.get_lines()
assert xmin <= lines[0].get_data()[0][0]
assert xmax >= lines[0].get_data()[0][-1]
示例8: test_area_lim
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import rand [as 别名]
def test_area_lim(self):
df = DataFrame(rand(6, 4), columns=['x', 'y', 'z', 'four'])
neg_df = -df
for stacked in [True, False]:
ax = _check_plot_works(df.plot.area, stacked=stacked)
xmin, xmax = ax.get_xlim()
ymin, ymax = ax.get_ylim()
lines = ax.get_lines()
assert xmin <= lines[0].get_data()[0][0]
assert xmax >= lines[0].get_data()[0][-1]
assert ymin == 0
ax = _check_plot_works(neg_df.plot.area, stacked=stacked)
ymin, ymax = ax.get_ylim()
assert ymax == 0
示例9: test_kde_colors
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import rand [as 别名]
def test_kde_colors(self):
_skip_if_no_scipy_gaussian_kde()
from matplotlib import cm
custom_colors = 'rgcby'
df = DataFrame(rand(5, 5))
ax = df.plot.kde(color=custom_colors)
self._check_colors(ax.get_lines(), linecolors=custom_colors)
tm.close()
ax = df.plot.kde(colormap='jet')
rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df)))
self._check_colors(ax.get_lines(), linecolors=rgba_colors)
tm.close()
ax = df.plot.kde(colormap=cm.jet)
rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df)))
self._check_colors(ax.get_lines(), linecolors=rgba_colors)
示例10: test_partially_invalid_plot_data
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import rand [as 别名]
def test_partially_invalid_plot_data(self):
with tm.RNGContext(42):
df = DataFrame(randn(10, 2), dtype=object)
df[np.random.rand(df.shape[0]) > 0.5] = 'a'
for kind in plotting._core._common_kinds:
if not _ok_for_gaussian_kde(kind):
continue
with pytest.raises(TypeError):
df.plot(kind=kind)
with tm.RNGContext(42):
# area plot doesn't support positive/negative mixed data
kinds = ['area']
df = DataFrame(rand(10, 2), dtype=object)
df[np.random.rand(df.shape[0]) > 0.5] = 'a'
for kind in kinds:
with pytest.raises(TypeError):
df.plot(kind=kind)
示例11: test_pie_df_nan
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import rand [as 别名]
def test_pie_df_nan(self):
df = DataFrame(np.random.rand(4, 4))
for i in range(4):
df.iloc[i, i] = np.nan
fig, axes = self.plt.subplots(ncols=4)
df.plot.pie(subplots=True, ax=axes, legend=True)
base_expected = ['0', '1', '2', '3']
for i, ax in enumerate(axes):
expected = list(base_expected) # force copy
expected[i] = ''
result = [x.get_text() for x in ax.texts]
assert result == expected
# legend labels
# NaN's not included in legend with subplots
# see https://github.com/pandas-dev/pandas/issues/8390
assert ([x.get_text() for x in ax.get_legend().get_texts()] ==
base_expected[:i] + base_expected[i + 1:])
示例12: test_errorbar_asymmetrical
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import rand [as 别名]
def test_errorbar_asymmetrical(self):
np.random.seed(0)
err = np.random.rand(3, 2, 5)
# each column is [0, 1, 2, 3, 4], [3, 4, 5, 6, 7]...
df = DataFrame(np.arange(15).reshape(3, 5)).T
ax = df.plot(yerr=err, xerr=err / 2)
yerr_0_0 = ax.collections[1].get_paths()[0].vertices[:, 1]
expected_0_0 = err[0, :, 0] * np.array([-1, 1])
tm.assert_almost_equal(yerr_0_0, expected_0_0)
with pytest.raises(ValueError):
df.plot(yerr=err.T)
tm.close()
# This XPASSES when tested with mpl == 3.0.1
示例13: test_frame_negate
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import rand [as 别名]
def test_frame_negate(self):
expr = self.ex('-')
# float
lhs = DataFrame(randn(5, 2))
expect = -lhs
result = pd.eval(expr, engine=self.engine, parser=self.parser)
assert_frame_equal(expect, result)
# int
lhs = DataFrame(randint(5, size=(5, 2)))
expect = -lhs
result = pd.eval(expr, engine=self.engine, parser=self.parser)
assert_frame_equal(expect, result)
# bool doesn't work with numexpr but works elsewhere
lhs = DataFrame(rand(5, 2) > 0.5)
if self.engine == 'numexpr':
with pytest.raises(NotImplementedError):
result = pd.eval(expr, engine=self.engine, parser=self.parser)
else:
expect = -lhs
result = pd.eval(expr, engine=self.engine, parser=self.parser)
assert_frame_equal(expect, result)
示例14: test_series_negate
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import rand [as 别名]
def test_series_negate(self):
expr = self.ex('-')
# float
lhs = Series(randn(5))
expect = -lhs
result = pd.eval(expr, engine=self.engine, parser=self.parser)
assert_series_equal(expect, result)
# int
lhs = Series(randint(5, size=5))
expect = -lhs
result = pd.eval(expr, engine=self.engine, parser=self.parser)
assert_series_equal(expect, result)
# bool doesn't work with numexpr but works elsewhere
lhs = Series(rand(5) > 0.5)
if self.engine == 'numexpr':
with pytest.raises(NotImplementedError):
result = pd.eval(expr, engine=self.engine, parser=self.parser)
else:
expect = -lhs
result = pd.eval(expr, engine=self.engine, parser=self.parser)
assert_series_equal(expect, result)
示例15: test_frame_pos
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import rand [as 别名]
def test_frame_pos(self):
expr = self.ex('+')
# float
lhs = DataFrame(randn(5, 2))
expect = lhs
result = pd.eval(expr, engine=self.engine, parser=self.parser)
assert_frame_equal(expect, result)
# int
lhs = DataFrame(randint(5, size=(5, 2)))
expect = lhs
result = pd.eval(expr, engine=self.engine, parser=self.parser)
assert_frame_equal(expect, result)
# bool doesn't work with numexpr but works elsewhere
lhs = DataFrame(rand(5, 2) > 0.5)
expect = lhs
result = pd.eval(expr, engine=self.engine, parser=self.parser)
assert_frame_equal(expect, result)