当前位置: 首页>>代码示例>>Python>>正文


Python random.poisson方法代码示例

本文整理汇总了Python中numpy.random.poisson方法的典型用法代码示例。如果您正苦于以下问题:Python random.poisson方法的具体用法?Python random.poisson怎么用?Python random.poisson使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy.random的用法示例。


在下文中一共展示了random.poisson方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: generate

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import poisson [as 别名]
def generate(shp=(30, 30, 20, 10), K=5, alpha=0.1, beta=0.1):
    """Generate a count tensor from the BPTF model.

    PARAMS:
    shp -- (tuple) shape of the generated count tensor
    K -- (int) number of latent components
    alpha -- (float) shape parameter of gamma prior over factors
    beta -- (float) rate parameter of gamma prior over factors

    RETURNS:
    Mu -- (np.ndarray) true Poisson rates
    Y -- (np.ndarray) generated count tensor
    """
    Theta_DK_M = [rn.gamma(alpha, 1./beta, size=(D, K)) for D in shp]
    Mu = parafac(Theta_DK_M)
    assert Mu.shape == shp
    Y = rn.poisson(Mu)
    return Mu, Y 
开发者ID:aschein,项目名称:bptf,代码行数:20,代码来源:anomaly_detection.py

示例2: corrupt

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import poisson [as 别名]
def corrupt(Y, p=0.05):
    """Corrupt a count tensor with anomalies.

    The corruption noise model is:

        corrupt(y) = y * g, where g ~ Gamma(10, 2)

    PARAMS:
    p -- (float) proportion of tensor entries to corrupt

    RETURNS:
    out -- (np.ndarray) corrupted count tensor
    mask -- (np.ndarray) boolean array, same shape as count tensor
                         True means that entry was corrupted.
    """
    out = Y.copy()
    mask = (rn.random(size=out.shape) < p).astype(bool)
    out[mask] = rn.poisson(out[mask] * rn.gamma(10., 2., size=out[mask].shape))
    return out, mask 
开发者ID:aschein,项目名称:bptf,代码行数:21,代码来源:anomaly_detection.py

示例3: rvs

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import poisson [as 别名]
def rvs(self, size=None):
        return random.poisson(self.rate, size=size) 
开发者ID:nchopin,项目名称:particles,代码行数:4,代码来源:distributions.py

示例4: logpdf

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import poisson [as 别名]
def logpdf(self, x):
        return stats.poisson.logpmf(x, self.rate) 
开发者ID:nchopin,项目名称:particles,代码行数:4,代码来源:distributions.py

示例5: ppf

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import poisson [as 别名]
def ppf(self, u):
        return stats.poisson.ppf(u, self.rate) 
开发者ID:nchopin,项目名称:particles,代码行数:4,代码来源:distributions.py

示例6: generate_spot

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import poisson [as 别名]
def generate_spot(p):
    position = rand(p['dimension'])
    gene = random.choice(range(len(codebook)))
    barcode = array(codebook[gene])
    photons = [poisson(p['N_photons_per_flour'])*poisson(p['N_flour'])*b for b in barcode]
    return DataFrame({'position': [position], 'barcode': [barcode], 'photons': [photons], 'gene':gene})

# right now there is no jitter on positions of the spots, we might want to make it a vector
# EPY: END code

# EPY: START code 
开发者ID:spacetx,项目名称:starfish,代码行数:13,代码来源:Starfish_simulation.py

示例7: generate_events

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import poisson [as 别名]
def generate_events(self,start_date,end_date):
        '''
        Generate a sequence of events at the customers daily rates.  Each count for an event on a day is droing from
        a poisson distribution with the customers average rate.  If the number is greater than zero, that number of events
        are created as tuples of time stamps and the event index (which is the database type id).  The time of the
        event is randomly set to anything on the 24 hour range.
        :param start_date: datetime.date for start of simulation
        :param end_date: datetime.date for end of simulation
        :return: The total count of each event, the list of all of the event tuples
        '''

        delta = end_date - start_date

        events=[]
        counts=[0]*len(self.behave_per_day)
        for i in range(delta.days):
            the_date = start_date + timedelta(days=i)
            if the_date in Customer.date_multipliers:
                multiplier = Customer.date_multipliers[the_date]
            else:
                if the_date.weekday() >= 4:
                    multiplier = random.uniform(1.00,1.2)
                else:
                    multiplier = random.uniform(0.825,1.025)
                Customer.date_multipliers[the_date]=multiplier
            for event_idx,rate in  enumerate(self.behave_per_day):
                new_count= int(round(multiplier*random.poisson(rate)))
                counts[event_idx] += new_count
                for n in range(0,new_count):
                    event_time=datetime.combine(the_date,time(randrange(24),randrange(60),randrange(60)))
                    new_event=(event_time,event_idx)
                    events.append(new_event )

        self.events.extend(events)

        return counts 
开发者ID:carl24k,项目名称:fight-churn,代码行数:38,代码来源:customer.py

示例8: seed_links

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import poisson [as 别名]
def seed_links(self):
        # bias with non-random seed links
        self.bias_links()
        if self.link_count() < self.max_links_cached:
            num_words = max(1,npr.poisson(1.33)+1)  # mean of 1.33 words per search
            if num_words == 1:
                word = ' '.join(random.sample(self.words,num_words))
            else:
                if npr.uniform() < 0.5:
                    word = ' '.join(random.sample(self.words,num_words))
                else:      # quote the first two words together
                    word = ' '.join(['"{}"'.format(' '.join(random.sample(self.words, 2))),
                                     ' '.join(random.sample(self.words, num_words-2))])
            if self.debug: print(f'Seeding with search for \'{word}\'…')
            self.get_websearch(word) 
开发者ID:essandess,项目名称:isp-data-pollution,代码行数:17,代码来源:isp_data_pollution.py

示例9: __call__

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import poisson [as 别名]
def __call__(self):
    return nr.poisson(lam=self.s, size=np.size(self.s)) - self.s 
开发者ID:dragonfly,项目名称:dragonfly,代码行数:4,代码来源:metropolis.py

示例10: detect

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import poisson [as 别名]
def detect(Y, K=5, alpha=0.1, thresh=1e-5):
    """Detect anomalies using BPTF.

    This method fits BPTF to Y and obtains Mu, which is the model's
    reconstruction of Y (computed from the inferred latent factors).
    Anomalies are then all entries of Y whose probability given Mu
    is less than a given threshold.

        If P(y | mu) < thresh ==> y is  anomaly!

        Here P(y | mu) = Pois(y; mu), the PMF of the Poisson distribution.

    PARAMS:
    Y -- (np.ndarray) data count tensor
    K -- (int) number of latent components
    alpha -- (float) shape parameter of gamma prior over factors
    thresh -- (float) anomaly threshold (between 0 and 1).
    """
    bptf = BPTF(n_modes=Y.ndim,
                n_components=K,
                max_iter=100,
                tol=1e-4,
                smoothness=100,
                verbose=False,
                alpha=alpha,
                debug=False)
    bptf.fit(Y)
    Mu = bptf.reconstruct()

    return st.poisson.pmf(Y, Mu) < thresh 
开发者ID:aschein,项目名称:bptf,代码行数:32,代码来源:anomaly_detection.py

示例11: setup_class

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import poisson [as 别名]
def setup_class(self):
        from scitbx.array_family import flex

        spot = flex.double(flex.grid(11, 11))
        for j in range(11):
            for i in range(11):
                spot[j, i] = exp(-((j - 5) ** 2 + (i - 5) ** 2) / 2 ** 2)

        self.image = flex.double(flex.grid(2000, 2000))
        for n in range(200):
            x = randint(0, 2000)
            y = randint(0, 2000)
            for j in range(0, 11):
                for i in range(0, 11):
                    xx = x + i - 5
                    yy = y + j - 5
                    if xx >= 0 and yy >= 0 and xx < 2000 and yy < 2000:
                        self.image[yy, xx] = poisson(100 * spot[j, i])

        background = flex.double(list(poisson(5, 2000 * 2000)))
        background.reshape(flex.grid(2000, 2000))

        self.image += background

        # Create an image
        self.mask = flex.random_bool(2000 * 2000, 0.99)
        self.mask.reshape(flex.grid(2000, 2000))
        self.gain = flex.random_double(2000 * 2000) + 1.0
        self.gain.reshape(flex.grid(2000, 2000))
        self.size = (3, 3)
        self.min_count = 2 
开发者ID:dials,项目名称:dials,代码行数:33,代码来源:test_local.py

示例12: RobotStep

# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import poisson [as 别名]
def RobotStep(args):
  global t

  # Input from Sensors
  SL, SR = Env.GetSensors(x[t], y[t], w[t])

  RL_spikes = 0.0
  RR_spikes = 0.0
  for t2 in xrange(dt):

    # Deliver stimulus as a Poisson spike stream to the sensor neurons and
    # noisy base current to the motor neurons
    I = np.hstack([rn.poisson(SL*15, N1), rn.poisson(SR*15, N2),
                   5*rn.randn(N3), 5*rn.randn(N4)])

    # Update network
    net.setCurrent(I)
    fired = net.update()

    RL_spikes += np.sum(np.logical_and(fired > (N1+N2), fired < N1+N2+N3))
    RR_spikes += np.sum(fired > (N1+N2+N3))

    # Maintain record of membrane potential
    v[t2,:],_ = net.getState()

  # Output to motors
  # Calculate motor firing rates in Hz
  RL = 1.0*RL_spikes/(dt*N3)*1000.0
  RR = 1.0*RR_spikes/(dt*N4)*1000.0

  # Set wheel velocities (as fractions of Umax)
  UL = (Umin/Umax + RL/Rmax*(1 - Umin/Umax))
  UR = (Umin/Umax + RR/Rmax*(1 - Umin/Umax))

  # Update Environment
  x[t+1], y[t+1], w[t+1] = RobotUpdate(x[t], y[t], w[t], UL, UR,
                                       Umax, dt, xmax, ymax)

  ## PLOTTING
  for i in range(Ns):
    pl11[i].set_data(range(dt), v[:,i])
    pl12[i].set_data(range(dt), v[:,i+Ns])

  for i in range(Nm):
    pl21[i].set_data(range(dt), v[:,2*Ns+i])
    pl22[i].set_data(range(dt), v[:,2*Ns+Nm+i])

  ax2.scatter(x, y)
  manager1.canvas.draw()
  manager2.canvas.draw()

  t += 1

  if t == len(x)-1:
    print 'Terminating simulation'
    StopSimulation()

# Get the thing going 
开发者ID:pmediano,项目名称:ComputationalNeurodynamics,代码行数:60,代码来源:RobotRun4L-u16.py


注:本文中的numpy.random.poisson方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。