当前位置: 首页>>代码示例>>Python>>正文


Python mtrand.RandomState方法代码示例

本文整理汇总了Python中numpy.random.mtrand.RandomState方法的典型用法代码示例。如果您正苦于以下问题:Python mtrand.RandomState方法的具体用法?Python mtrand.RandomState怎么用?Python mtrand.RandomState使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy.random.mtrand的用法示例。


在下文中一共展示了mtrand.RandomState方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: ensemble

# 需要导入模块: from numpy.random import mtrand [as 别名]
# 或者: from numpy.random.mtrand import RandomState [as 别名]
def ensemble(self, x, random=None):
        if random is None:
            random = RandomState()
        elif not isinstance(random, RandomState):
            raise TypeError('Invalid random state.')

        config = ensemble.EnsembleConfiguration(adaptation_lag=self.adaptation_lag,
                                                adaptation_time=self.adaptation_time,
                                                scale_factor=self.scale_factor,
                                                evaluator=self._evaluator)
        return ensemble.Ensemble(x=x,
                                 betas=self.betas.copy(),
                                 config=config,
                                 adaptive=self.adaptive,
                                 random=random,
                                 mapper=self._mapper) 
开发者ID:willvousden,项目名称:ptemcee,代码行数:18,代码来源:sampler.py

示例2: __init__

# 需要导入模块: from numpy.random import mtrand [as 别名]
# 或者: from numpy.random.mtrand import RandomState [as 别名]
def __init__(self, n_qubits: int, rs: Optional[RandomState] = None):
        """
        A wavefunction simulator that uses numpy's tensordot or einsum to update a state vector

        Please consider using
        :py:class:`PyQVM(..., quantum_simulator_type=NumpyWavefunctionSimulator)` rather
        than using this class directly.

        This class uses a n_qubit-dim ndarray to store wavefunction
        amplitudes. The array is indexed into with a tuple of n_qubits 1's and 0's, with
        qubit 0 as the leftmost bit. This is the opposite convention of the Rigetti Lisp QVM.

        :param n_qubits: Number of qubits to simulate.
        :param rs: a RandomState (should be shared with the owning :py:class:`PyQVM`) for
            doing anything stochastic. A value of ``None`` disallows doing anything stochastic.
        """
        super().__init__(n_qubits=n_qubits, rs=rs)

        self.n_qubits = n_qubits
        self.rs = rs

        self.wf = np.zeros((2,) * n_qubits, dtype=np.complex128)
        self.wf[(0,) * n_qubits] = complex(1.0, 0) 
开发者ID:rigetti,项目名称:pyquil,代码行数:25,代码来源:_numpy.py

示例3: __init__

# 需要导入模块: from numpy.random import mtrand [as 别名]
# 或者: from numpy.random.mtrand import RandomState [as 别名]
def __init__(self, n_qubits: int, rs: Optional[RandomState] = None):
        """
        A wavefunction simulator that prioritizes readability over performance.

        Please consider using
        :py:class:`PyQVM(..., wf_simulator_type=ReferenceWavefunctionSimulator)` rather
        than using this class directly.

        This class uses a flat state-vector of length 2^n_qubits to store wavefunction
        amplitudes. The basis is taken to be bitstrings ordered lexicographically with
        qubit 0 as the rightmost bit. This is the same as the Rigetti Lisp QVM.

        :param n_qubits: Number of qubits to simulate.
        :param rs: a RandomState (should be shared with the owning :py:class:`PyQVM`) for
            doing anything stochastic. A value of ``None`` disallows doing anything stochastic.
        """
        super().__init__(n_qubits=n_qubits, rs=rs)

        self.n_qubits = n_qubits
        self.rs = rs

        self.wf = np.zeros(2 ** n_qubits, dtype=np.complex128)
        self.wf[0] = complex(1.0, 0) 
开发者ID:rigetti,项目名称:pyquil,代码行数:25,代码来源:_reference.py

示例4: stratified_k_fold

# 需要导入模块: from numpy.random import mtrand [as 别名]
# 或者: from numpy.random.mtrand import RandomState [as 别名]
def stratified_k_fold(
        label: str, df: pd.DataFrame = None, file: str = None, n_splits=5,
        seed: int = 0
):
    random_state = RandomState(seed)

    if file is not None:
        df = pd.read_csv(file)

    index = np.arange(df.shape[0])
    res = np.zeros(index.shape)
    folds = StratifiedKFold(n_splits=n_splits,
                            random_state=random_state,
                            shuffle=True).split(index, df[label])

    for i, (train, val) in enumerate(folds):
        res[val] = i
    return res.astype(np.int) 
开发者ID:lightforever,项目名称:mlcomp,代码行数:20,代码来源:frame.py

示例5: __init__

# 需要导入模块: from numpy.random import mtrand [as 别名]
# 或者: from numpy.random.mtrand import RandomState [as 别名]
def __init__(self, seed, dist=None):
        if seed <= 0:
            self._rng = mt.RandomState()
        elif seed > 0:
            self._rng = mt.RandomState(seed)
        if dist is None:
            dist = default_distribution
        if not isinstance(dist, Distribution):
            raise error("Not a distribution object")
        self._dist = dist 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:12,代码来源:rng.py

示例6: test_random_1

# 需要导入模块: from numpy.random import mtrand [as 别名]
# 或者: from numpy.random.mtrand import RandomState [as 别名]
def test_random_1(self):
        def f():
            randomState = numpy.random.mtrand.RandomState(seed=42)
            return randomState.rand()

        numpy.testing.assert_allclose(
            self.evaluateWithExecutor(f),
            f()
            ) 
开发者ID:ufora,项目名称:ufora,代码行数:11,代码来源:RandomTestCases.py

示例7: test_random_2

# 需要导入模块: from numpy.random import mtrand [as 别名]
# 或者: from numpy.random.mtrand import RandomState [as 别名]
def test_random_2(self):
        def f():
            randomState = mtrand.RandomState(seed=42)
            return randomState.rand(10)

        numpy.testing.assert_allclose(
            self.evaluateWithExecutor(f),
            f()
            ) 
开发者ID:ufora,项目名称:ufora,代码行数:11,代码来源:RandomTestCases.py

示例8: test_random_repeated_sampling

# 需要导入模块: from numpy.random import mtrand [as 别名]
# 或者: from numpy.random.mtrand import RandomState [as 别名]
def test_random_repeated_sampling(self):
        def f():
            randomstate = mtrand.RandomState(seed=42)
            rand0 = randomstate.rand()
            rand1 = randomstate.rand()
            rand2 = randomstate.rand()

            return (rand0, rand1, rand2)

        numpy.testing.assert_allclose(
            self.evaluateWithExecutor(f),
            f()
            ) 
开发者ID:ufora,项目名称:ufora,代码行数:15,代码来源:RandomTestCases.py

示例9: test_random_normals_1

# 需要导入模块: from numpy.random import mtrand [as 别名]
# 或者: from numpy.random.mtrand import RandomState [as 别名]
def test_random_normals_1(self):
        def f():
            randomstate = mtrand.RandomState(seed=42)
            return randomstate.randn()

        numpy.testing.assert_allclose(
            self.evaluateWithExecutor(f),
            f()
            ) 
开发者ID:ufora,项目名称:ufora,代码行数:11,代码来源:RandomTestCases.py

示例10: test_random_normals_2

# 需要导入模块: from numpy.random import mtrand [as 别名]
# 或者: from numpy.random.mtrand import RandomState [as 别名]
def test_random_normals_2(self):
        def f():
            randomstate = mtrand.RandomState(seed=42)
            return randomstate.randn(10)

        numpy.testing.assert_allclose(
            self.evaluateWithExecutor(f),
            f()
            ) 
开发者ID:ufora,项目名称:ufora,代码行数:11,代码来源:RandomTestCases.py

示例11: test_various_randoms

# 需要导入模块: from numpy.random import mtrand [as 别名]
# 或者: from numpy.random.mtrand import RandomState [as 别名]
def test_various_randoms(self):
        def f():
            rng = mtrand.RandomState(seed=42)
            f = rng.rand(4)
            p = rng.rand()

            return p + f[0]

        # just check that this doesn't blow up
        self.evaluateWithExecutor(f) 
开发者ID:ufora,项目名称:ufora,代码行数:12,代码来源:RandomTestCases.py

示例12: test_random_uniforms_1

# 需要导入模块: from numpy.random import mtrand [as 别名]
# 或者: from numpy.random.mtrand import RandomState [as 别名]
def test_random_uniforms_1(self):
        def f():
            randomstate = mtrand.RandomState(seed=42)
            unif = randomstate.uniform(-1, 1)
            return unif

        numpy.testing.assert_allclose(
            self.evaluateWithExecutor(f),
            f()
            ) 
开发者ID:ufora,项目名称:ufora,代码行数:12,代码来源:RandomTestCases.py

示例13: test_random_uniforms_2

# 需要导入模块: from numpy.random import mtrand [as 别名]
# 或者: from numpy.random.mtrand import RandomState [as 别名]
def test_random_uniforms_2(self):
        def f():
            randomstate = mtrand.RandomState(seed=42)
            return randomstate.uniform(low=-1.0, high=1.0, size=9)

        numpy.testing.assert_allclose(
            self.evaluateWithExecutor(f),
            f()
            ) 
开发者ID:ufora,项目名称:ufora,代码行数:11,代码来源:RandomTestCases.py

示例14: test_sorted_large_1

# 需要导入模块: from numpy.random import mtrand [as 别名]
# 或者: from numpy.random.mtrand import RandomState [as 别名]
def test_sorted_large_1(self):
        def f():
            rng = mtrand.RandomState(seed=250015)
            x = rng.uniform(size=1000)
            res = sorted(x)
            return all(
                [res[ix] <= res[ix + 1]
                for ix in xrange(len(res) - 1)]
                )

        self.equivalentEvaluationTest(f) 
开发者ID:ufora,项目名称:ufora,代码行数:13,代码来源:BuiltinTestCases.py

示例15: test_sorted_large_2

# 需要导入模块: from numpy.random import mtrand [as 别名]
# 或者: from numpy.random.mtrand import RandomState [as 别名]
def test_sorted_large_2(self):
        def f():
            rng = mtrand.RandomState(seed=250015)
            x = rng.uniform(size=1000000)
            res = sorted(x)
            return all(
                [res[ix] <= res[ix + 1]
                for ix in xrange(len(res) - 1)]
                )


        self.equivalentEvaluationTest(f) 
开发者ID:ufora,项目名称:ufora,代码行数:14,代码来源:BuiltinTestCases.py


注:本文中的numpy.random.mtrand.RandomState方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。