本文整理汇总了Python中numpy.random.exponential方法的典型用法代码示例。如果您正苦于以下问题:Python random.exponential方法的具体用法?Python random.exponential怎么用?Python random.exponential使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy.random
的用法示例。
在下文中一共展示了random.exponential方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: adjustingOperator
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import exponential [as 别名]
def adjustingOperator(self, t, max_t, D, NP1, NP2, Butterflies, best):
r"""Apply the adjusting operator.
Args:
t (int): Current generation.
max_t (int): Maximum generation.
D (int): Number of dimensions.
NP1 (int): Number of butterflies in Land 1.
NP2 (int): Number of butterflies in Land 2.
Butterflies (numpy.ndarray): Current butterfly population.
best (numpy.ndarray): The best butterfly currently.
Returns:
numpy.ndarray: Adjusted butterfly population.
"""
pop2 = copy(Butterflies[NP1:])
for k2 in range(NP1, NP1 + NP2):
scale = 1.0 / ((t + 1)**2)
step_size = ceil(exponential(2 * max_t))
delataX = self.levy(step_size, D)
for parnum2 in range(0, D):
if self.uniform(0.0, 1.0) >= self.PAR:
Butterflies[k2, parnum2] = best[parnum2]
else:
r4 = self.randint(Nmin=0, Nmax=NP2 - 1)
Butterflies[k2, parnum2] = pop2[r4, 1]
if self.uniform(0.0, 1.0) > self.BAR:
Butterflies[k2, parnum2] += scale * \
(delataX[parnum2] - 0.5)
return Butterflies
示例2: draw_from_prior
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import exponential [as 别名]
def draw_from_prior(self):
return npr.exponential(size=self.D)*self.th0
示例3: __init__
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import exponential [as 别名]
def __init__(self, *args, **kwargs):
"""
:name: Name of the parameter
:scale: The scale parameter, \beta = 1/\lambda.
:step: (optional) number for step size required for some algorithms,
eg. mcmc need a parameter of the variance for the next step
default is median of rndfunc(*rndargs, size=1000)
:optguess: (optional) number for start point of parameter
default is quantile(0.5) - quantile(0.4) of
rndfunc(*rndargs, size=1000)
"""
super(Exponential, self).__init__(rnd.exponential, 'Exponential', *args, **kwargs)
示例4: generate_poisson
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import exponential [as 别名]
def generate_poisson(self, tstart, tend, cadence):
n=int((tend-tstart)/cadence*2 + 20)
dts=cadence*nr.exponential(size=n)
ts=tstart + np.cumsum(dts)
return ts[ts<tend]
示例5: __init__
# 需要导入模块: from numpy import random [as 别名]
# 或者: from numpy.random import exponential [as 别名]
def __init__(self, num_servers=1, arrival_f=None,
service_f=None, edge=(0, 0, 0, 1),
AgentFactory=Agent, collect_data=False, active_cap=infty,
deactive_t=infty, colors=None, seed=None,
coloring_sensitivity=2, **kwargs):
if not isinstance(num_servers, numbers.Integral) and num_servers is not infty:
msg = "num_servers must be an integer or infinity."
raise TypeError(msg)
elif num_servers <= 0:
msg = "num_servers must be a positive integer or infinity."
raise ValueError(msg)
self.edge = edge
self.num_servers = kwargs.get('nServers', num_servers)
self.num_departures = 0
self.num_system = 0
self.data = {} # times; agent_id : [arrival, service start, departure]
self.queue = collections.deque()
if arrival_f is None:
def arrival_f(t):
return t + exponential(1.0)
if service_f is None:
def service_f(t):
return t + exponential(0.9)
self.arrival_f = arrival_f
self.service_f = service_f
self.AgentFactory = AgentFactory
self.collect_data = collect_data
self.active_cap = active_cap
self.deactive_t = deactive_t
inftyAgent = InftyAgent()
self._arrivals = [inftyAgent] # A list of arriving agents.
self._departures = [inftyAgent] # A list of departing agents.
self._num_arrivals = 0
self._oArrivals = 0
self._num_total = 0 # The number of agents scheduled to arrive + num_system
self._active = False
self._current_t = 0 # The time of the last event.
self._time = infty # The time of the next event.
self._next_ct = 0 # The next time an arrival from outside the network can arrive.
self.coloring_sensitivity = coloring_sensitivity
if isinstance(seed, numbers.Integral):
np.random.seed(seed)
if colors is not None:
self.colors = colors
for col in set(self._default_colors.keys()) - set(self.colors.keys()):
self.colors[col] = self._default_colors[col]
else:
self.colors = self._default_colors