本文整理汇总了Python中numpy.polynomial.polynomial.polyval2d方法的典型用法代码示例。如果您正苦于以下问题:Python polynomial.polyval2d方法的具体用法?Python polynomial.polyval2d怎么用?Python polynomial.polyval2d使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy.polynomial.polynomial
的用法示例。
在下文中一共展示了polynomial.polyval2d方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_polyval2d
# 需要导入模块: from numpy.polynomial import polynomial [as 别名]
# 或者: from numpy.polynomial.polynomial import polyval2d [as 别名]
def test_polyval2d(self):
x1, x2, x3 = self.x
y1, y2, y3 = self.y
#test exceptions
assert_raises(ValueError, poly.polyval2d, x1, x2[:2], self.c2d)
#test values
tgt = y1*y2
res = poly.polyval2d(x1, x2, self.c2d)
assert_almost_equal(res, tgt)
#test shape
z = np.ones((2, 3))
res = poly.polyval2d(z, z, self.c2d)
assert_(res.shape == (2, 3))
示例2: test_polyvander2d
# 需要导入模块: from numpy.polynomial import polynomial [as 别名]
# 或者: from numpy.polynomial.polynomial import polyval2d [as 别名]
def test_polyvander2d(self):
# also tests polyval2d for non-square coefficient array
x1, x2, x3 = self.x
c = np.random.random((2, 3))
van = poly.polyvander2d(x1, x2, [1, 2])
tgt = poly.polyval2d(x1, x2, c)
res = np.dot(van, c.flat)
assert_almost_equal(res, tgt)
# check shape
van = poly.polyvander2d([x1], [x2], [1, 2])
assert_(van.shape == (1, 5, 6))
示例3: test_polyvander2d
# 需要导入模块: from numpy.polynomial import polynomial [as 别名]
# 或者: from numpy.polynomial.polynomial import polyval2d [as 别名]
def test_polyvander2d(self) :
# also tests polyval2d for non-square coefficient array
x1, x2, x3 = self.x
c = np.random.random((2, 3))
van = poly.polyvander2d(x1, x2, [1, 2])
tgt = poly.polyval2d(x1, x2, c)
res = np.dot(van, c.flat)
assert_almost_equal(res, tgt)
# check shape
van = poly.polyvander2d([x1], [x2], [1, 2])
assert_(van.shape == (1, 5, 6))
示例4: test_two_dim_poly_fit
# 需要导入模块: from numpy.polynomial import polynomial [as 别名]
# 或者: from numpy.polynomial.polynomial import polyval2d [as 别名]
def test_two_dim_poly_fit(self):
coeffs = numpy.arange(9).reshape((3, 3))
y, x = numpy.meshgrid(numpy.arange(2, 6), numpy.arange(-2, 2))
z = polynomial.polyval2d(x, y, coeffs)
t_coeffs, residuals, rank, sing_vals = two_dim_poly_fit(x, y, z, x_order=2, y_order=2)
diff = (numpy.abs(coeffs - t_coeffs) < 1e-10)
self.assertTrue(numpy.all(diff))
示例5: deskewmem
# 需要导入模块: from numpy.polynomial import polynomial [as 别名]
# 或者: from numpy.polynomial.polynomial import polyval2d [as 别名]
def deskewmem(input_data, DeltaKCOAPoly, dim0_coords_m, dim1_coords_m, dim, fft_sgn=-1):
"""
Performs deskew (centering of the spectrum on zero frequency) on a complex dataset.
Parameters
----------
input_data : numpy.ndarray
Complex FFT Data
DeltaKCOAPoly : numpy.ndarray
Polynomial that describes center of frequency support of data.
dim0_coords_m : numpy.ndarray
dim1_coords_m : numpy.ndarray
dim : int
fft_sgn : int|float
Returns
-------
Tuple[numpy.ndarray, numpy.ndarray]
* `output_data` - Deskewed data
* `new_DeltaKCOAPoly` - Frequency support shift in the non-deskew dimension caused by the deskew.
"""
# Integrate DeltaKCOA polynomial (in meters) to form new polynomial DeltaKCOAPoly_int
DeltaKCOAPoly_int = polynomial.polyint(DeltaKCOAPoly, axis=dim)
# New DeltaKCOAPoly in other dimension will be negative of the derivative of
# DeltaKCOAPoly_int in other dimension (assuming it was zero before).
new_DeltaKCOAPoly = - polynomial.polyder(DeltaKCOAPoly_int, axis=dim-1)
# Apply phase adjustment from polynomial
dim1_coords_m_2d, dim0_coords_m_2d = np.meshgrid(dim1_coords_m, dim0_coords_m)
output_data = np.multiply(input_data, np.exp(1j * fft_sgn * 2 * np.pi *
polynomial.polyval2d(
dim0_coords_m_2d,
dim1_coords_m_2d,
DeltaKCOAPoly_int)))
return output_data, new_DeltaKCOAPoly
示例6: deskewmem
# 需要导入模块: from numpy.polynomial import polynomial [as 别名]
# 或者: from numpy.polynomial.polynomial import polyval2d [as 别名]
def deskewmem(input_data, DeltaKCOAPoly, dim0_coords_m, dim1_coords_m, dim, fft_sgn=-1):
"""Performs deskew (centering of the spectrum on zero frequency) on a complex dataset.
INPUTS:
input_data: Complex FFT Data
DeltaKCOAPoly: Polynomial that describes center of frequency support of data.
dim0_coords_m: Coordinate of each "row" in dimension 0
dim1_coords_m: Coordinate of each "column" in dimension 1
dim: Dimension over which to perform deskew
fft_sgn: FFT sign required to transform data to spatial frequency domain
OUTPUTS:
output_data: Deskewed data
new_DeltaKCOAPoly: Frequency support shift in the non-deskew dimension
caused by the deskew.
"""
# Integrate DeltaKCOA polynomial (in meters) to form new polynomial DeltaKCOAPoly_int
DeltaKCOAPoly_int = polynomial.polyint(DeltaKCOAPoly, axis=dim)
# New DeltaKCOAPoly in other dimension will be negative of the derivative of
# DeltaKCOAPoly_int in other dimension (assuming it was zero before).
new_DeltaKCOAPoly = - polynomial.polyder(DeltaKCOAPoly_int, axis=dim-1)
# Apply phase adjustment from polynomial
[dim1_coords_m_2d, dim0_coords_m_2d] = np.meshgrid(dim1_coords_m, dim0_coords_m)
output_data = np.multiply(input_data, np.exp(1j * fft_sgn * 2 * np.pi *
polynomial.polyval2d(
dim0_coords_m_2d,
dim1_coords_m_2d,
DeltaKCOAPoly_int)))
return output_data, new_DeltaKCOAPoly