当前位置: 首页>>代码示例>>Python>>正文


Python legendre.leg2poly方法代码示例

本文整理汇总了Python中numpy.polynomial.legendre.leg2poly方法的典型用法代码示例。如果您正苦于以下问题:Python legendre.leg2poly方法的具体用法?Python legendre.leg2poly怎么用?Python legendre.leg2poly使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy.polynomial.legendre的用法示例。


在下文中一共展示了legendre.leg2poly方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_legfromroots

# 需要导入模块: from numpy.polynomial import legendre [as 别名]
# 或者: from numpy.polynomial.legendre import leg2poly [as 别名]
def test_legfromroots(self):
        res = leg.legfromroots([])
        assert_almost_equal(trim(res), [1])
        for i in range(1, 5):
            roots = np.cos(np.linspace(-np.pi, 0, 2*i + 1)[1::2])
            pol = leg.legfromroots(roots)
            res = leg.legval(roots, pol)
            tgt = 0
            assert_(len(pol) == i + 1)
            assert_almost_equal(leg.leg2poly(pol)[-1], 1)
            assert_almost_equal(res, tgt) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:13,代码来源:test_legendre.py

示例2: test_leg2poly

# 需要导入模块: from numpy.polynomial import legendre [as 别名]
# 或者: from numpy.polynomial.legendre import leg2poly [as 别名]
def test_leg2poly(self):
        for i in range(10):
            assert_almost_equal(leg.leg2poly([0]*i + [1]), Llist[i]) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:5,代码来源:test_legendre.py

示例3: test_legfromroots

# 需要导入模块: from numpy.polynomial import legendre [as 别名]
# 或者: from numpy.polynomial.legendre import leg2poly [as 别名]
def test_legfromroots(self) :
        res = leg.legfromroots([])
        assert_almost_equal(trim(res), [1])
        for i in range(1, 5) :
            roots = np.cos(np.linspace(-np.pi, 0, 2*i + 1)[1::2])
            pol = leg.legfromroots(roots)
            res = leg.legval(roots, pol)
            tgt = 0
            assert_(len(pol) == i + 1)
            assert_almost_equal(leg.leg2poly(pol)[-1], 1)
            assert_almost_equal(res, tgt) 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:13,代码来源:test_legendre.py

示例4: test_leg2poly

# 需要导入模块: from numpy.polynomial import legendre [as 别名]
# 或者: from numpy.polynomial.legendre import leg2poly [as 别名]
def test_leg2poly(self) :
        for i in range(10) :
            assert_almost_equal(leg.leg2poly([0]*i + [1]), Llist[i]) 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:5,代码来源:test_legendre.py

示例5: _setup

# 需要导入模块: from numpy.polynomial import legendre [as 别名]
# 或者: from numpy.polynomial.legendre import leg2poly [as 别名]
def _setup(self, config):
        torch.manual_seed(config['seed'])
        self.model = HstackDiagProduct(size=config['size'])
        self.optimizer = optim.Adam(self.model.parameters(), lr=config['lr'])
        self.n_steps_per_epoch = config['n_steps_per_epoch']
        size = config['size']
        # Target: Legendre polynomials
        P = np.zeros((size, size), dtype=np.float64)
        for i, coef in enumerate(np.eye(size)):
            P[i, :i + 1] = legendre.leg2poly(coef)
        self.target_matrix = torch.tensor(P)
        self.br_perm = bitreversal_permutation(size)
        self.input = (torch.eye(size)[:, :, None, None] * torch.eye(2)).unsqueeze(-1)
        self.input_permuted = self.input[:, self.br_perm] 
开发者ID:HazyResearch,项目名称:learning-circuits,代码行数:16,代码来源:learning_ops.py

示例6: legendre_transpose_mult_slow

# 需要导入模块: from numpy.polynomial import legendre [as 别名]
# 或者: from numpy.polynomial.legendre import leg2poly [as 别名]
def legendre_transpose_mult_slow(v):
    """Naive multiplication P^T v where P is the matrix of coefficients of
    Legendre polynomials.
    Parameters:
        v: (batch_size, n)
    Return:
        P^T v: (batch_size, n)
    """
    n = v.shape[-1]
    # Construct the coefficient matrix P for Legendre polynomials
    P = np.zeros((n, n), dtype=np.float32)
    for i, coef in enumerate(np.eye(n)):
        P[i, :i + 1] = legendre.leg2poly(coef)
    P = torch.tensor(P)
    return v @ P 
开发者ID:HazyResearch,项目名称:learning-circuits,代码行数:17,代码来源:ops.py


注:本文中的numpy.polynomial.legendre.leg2poly方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。