本文整理汇总了Python中numpy.polyint方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.polyint方法的具体用法?Python numpy.polyint怎么用?Python numpy.polyint使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy
的用法示例。
在下文中一共展示了numpy.polyint方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: check_partialquadraturewithQ
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import polyint [as 别名]
def check_partialquadraturewithQ(collclass, t_start, t_end):
for M in range(2, 13):
coll = collclass(M, t_start, t_end)
Q = coll.Qmat[1:,1:]
# as in TEST 1, create and integrate a polynomial with random coefficients, but now of degree M-1 (or less for splines)
degree = min(coll.order,M-1)
poly_coeff = np.random.rand(degree)
poly_vals = np.polyval(poly_coeff, coll.nodes)
poly_int_coeff = np.polyint(poly_coeff)
for i in range(0,M):
int_ex = np.polyval(poly_int_coeff, coll.nodes[i]) - np.polyval(poly_int_coeff, t_start)
int_coll = np.dot(poly_vals, Q[i,:])
assert abs(int_ex - int_coll)<1e-12, "For node type " + coll.__class__.__name__ + ", partial quadrature from Qmat rule failed to integrate polynomial of degree M-1 exactly for M = " + str(M)
# TEST 3:
# Check that the partial quadrature rules from Smat entries have order equal to number of nodes M
# -----------------------------------------------------------------------------------------------
示例2: test_polyint_type
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import polyint [as 别名]
def test_polyint_type(self):
# Ticket #944
msg = "Wrong type, should be complex"
x = np.ones(3, dtype=complex)
assert_(np.polyint(x).dtype == complex, msg)
msg = "Wrong type, should be float"
x = np.ones(3, dtype=int)
assert_(np.polyint(x).dtype == float, msg)
示例3: test_polyint_type
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import polyint [as 别名]
def test_polyint_type(self):
# Ticket #944
msg = "Wrong type, should be complex"
x = np.ones(3, dtype=np.complex)
assert_(np.polyint(x).dtype == np.complex, msg)
msg = "Wrong type, should be float"
x = np.ones(3, dtype=np.int)
assert_(np.polyint(x).dtype == np.float, msg)
示例4: test_polyint_type
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import polyint [as 别名]
def test_polyint_type(self) :
"""Ticket #944"""
msg = "Wrong type, should be complex"
x = np.ones(3, dtype=np.complex)
assert_(np.polyint(x).dtype == np.complex, msg)
msg = "Wrong type, should be float"
x = np.ones(3, dtype=np.int)
assert_(np.polyint(x).dtype == np.float, msg)
示例5: check_canintegratepolynomials
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import polyint [as 别名]
def check_canintegratepolynomials(collclass,t_start,t_end):
for M in range(2,13):
coll = collclass(M, t_start, t_end)
# some basic consistency tests
assert np.size(coll.nodes)==np.size(coll.weights), "For node type " + type[0] + ", number of entries in nodes and weights is different"
assert np.size(coll.nodes)==M, "For node type " + type[0] + ", requesting M nodes did not produce M entries in nodes and weights"
# generate random set of polynomial coefficients
poly_coeff = np.random.rand(coll.order-1)
# evaluate polynomial at collocation nodes
poly_vals = np.polyval(poly_coeff, coll.nodes)
# use python's polyint function to compute anti-derivative of polynomial
poly_int_coeff = np.polyint(poly_coeff)
# Compute integral from 0.0 to 1.0
int_ex = np.polyval(poly_int_coeff, t_end) - np.polyval(poly_int_coeff, t_start)
# use quadrature rule to compute integral
int_coll = coll.evaluate(coll.weights, poly_vals)
# For large values of M, substantial differences from different round of error have to be considered
assert abs(int_ex - int_coll) < 1e-13, "For node type " + coll.__class__.__name__ + ", failed to integrate polynomial of degree " + str(coll.order-1) + " exactly. Error: %5.3e" % abs(int_ex - int_coll)
# TEST 2:
# Check that the Qmat entries are equal to the sum of Smat entries
# ----------------------------------------------------------------
示例6: check_partialquadraturewithS
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import polyint [as 别名]
def check_partialquadraturewithS(collclass, t_start, t_end):
for M in range(2, 13):
coll = collclass(M, t_start, t_end)
S = coll.Smat[1:,1:]
# as in TEST 1, create and integrate a polynomial with random coefficients, but now of degree M-1 (or less for splines)
degree = min(coll.order, M - 1)
poly_coeff = np.random.rand(degree)
poly_vals = np.polyval(poly_coeff, coll.nodes)
poly_int_coeff = np.polyint(poly_coeff)
for i in range(1,M):
int_ex = np.polyval(poly_int_coeff, coll.nodes[i]) - np.polyval(poly_int_coeff, coll.nodes[i-1])
int_coll = np.dot(poly_vals, S[i,:])
assert abs(int_ex - int_coll)<1e-12, "For node type " + coll.__class__.__name__ + ", partial quadrature rule from Smat failed to integrate polynomial of degree M-1 exactly for M = " + str(M)
示例7: BdRate
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import polyint [as 别名]
def BdRate(group1, group2):
"""Compute the BD-rate between two score groups.
The returned object also contains the range of PSNR values used
to compute the result.
Bjontegaard's metric allows to compute the average % saving in bitrate
between two rate-distortion curves [1].
rate1,psnr1 - RD points for curve 1
rate2,psnr2 - RD points for curve 2
adapted from code from: (c) 2010 Giuseppe Valenzise
copied from code by jzern@google.com, jimbankoski@google.com
"""
# pylint: disable=too-many-locals
metric_set1 = group1.dataPoints()
metric_set2 = group2.dataPoints()
# numpy plays games with its exported functions.
# pylint: disable=no-member
# pylint: disable=bad-builtin
psnr1 = [x[1] for x in metric_set1]
psnr2 = [x[1] for x in metric_set2]
log_rate1 = map(math.log, [x[0] for x in metric_set1])
log_rate2 = map(math.log, [x[0] for x in metric_set2])
# Best cubic poly fit for graph represented by log_ratex, psrn_x.
poly1 = numpy.polyfit(psnr1, log_rate1, 3)
poly2 = numpy.polyfit(psnr2, log_rate2, 3)
# Integration interval.
min_int = max([min(psnr1), min(psnr2)])
max_int = min([max(psnr1), max(psnr2)])
# find integral
p_int1 = numpy.polyint(poly1)
p_int2 = numpy.polyint(poly2)
# Calculate the integrated value over the interval we care about.
int1 = numpy.polyval(p_int1, max_int) - numpy.polyval(p_int1, min_int)
int2 = numpy.polyval(p_int2, max_int) - numpy.polyval(p_int2, min_int)
# Calculate the average improvement.
avg_exp_diff = (int2 - int1) / (max_int - min_int)
# In really bad formed data the exponent can grow too large.
# clamp it.
if avg_exp_diff > 200:
avg_exp_diff = 200
# Convert to a percentage.
avg_diff = (math.exp(avg_exp_diff) - 1) * 100
return {'difference': avg_diff, 'psnr':[min_int, max_int]}
示例8: bdsnr
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import polyint [as 别名]
def bdsnr(metric_set1, metric_set2):
"""
BJONTEGAARD Bjontegaard metric calculation
Bjontegaard's metric allows to compute the average gain in psnr between two
rate-distortion curves [1].
rate1,psnr1 - RD points for curve 1
rate2,psnr2 - RD points for curve 2
returns the calculated Bjontegaard metric 'dsnr'
code adapted from code written by : (c) 2010 Giuseppe Valenzise
http://www.mathworks.com/matlabcentral/fileexchange/27798-bjontegaard-metric/content/bjontegaard.m
"""
# pylint: disable=too-many-locals
# numpy seems to do tricks with its exports.
# pylint: disable=no-member
# map() is recommended against.
# pylint: disable=bad-builtin
rate1 = [x[0] for x in metric_set1]
psnr1 = [x[1] for x in metric_set1]
rate2 = [x[0] for x in metric_set2]
psnr2 = [x[1] for x in metric_set2]
log_rate1 = map(math.log, rate1)
log_rate2 = map(math.log, rate2)
# Best cubic poly fit for graph represented by log_ratex, psrn_x.
poly1 = numpy.polyfit(log_rate1, psnr1, 3)
poly2 = numpy.polyfit(log_rate2, psnr2, 3)
# Integration interval.
min_int = max([min(log_rate1), min(log_rate2)])
max_int = min([max(log_rate1), max(log_rate2)])
# Integrate poly1, and poly2.
p_int1 = numpy.polyint(poly1)
p_int2 = numpy.polyint(poly2)
# Calculate the integrated value over the interval we care about.
int1 = numpy.polyval(p_int1, max_int) - numpy.polyval(p_int1, min_int)
int2 = numpy.polyval(p_int2, max_int) - numpy.polyval(p_int2, min_int)
# Calculate the average improvement.
if max_int != min_int:
avg_diff = (int2 - int1) / (max_int - min_int)
else:
avg_diff = 0.0
return avg_diff
示例9: bdrate
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import polyint [as 别名]
def bdrate(metric_set1, metric_set2):
"""
BJONTEGAARD Bjontegaard metric calculation
Bjontegaard's metric allows to compute the average % saving in bitrate
between two rate-distortion curves [1].
rate1,psnr1 - RD points for curve 1
rate2,psnr2 - RD points for curve 2
adapted from code from: (c) 2010 Giuseppe Valenzise
"""
# numpy plays games with its exported functions.
# pylint: disable=no-member
# pylint: disable=too-many-locals
# pylint: disable=bad-builtin
rate1 = [x[0] for x in metric_set1]
psnr1 = [x[1] for x in metric_set1]
rate2 = [x[0] for x in metric_set2]
psnr2 = [x[1] for x in metric_set2]
log_rate1 = map(math.log, rate1)
log_rate2 = map(math.log, rate2)
# Best cubic poly fit for graph represented by log_ratex, psrn_x.
poly1 = numpy.polyfit(psnr1, log_rate1, 3)
poly2 = numpy.polyfit(psnr2, log_rate2, 3)
# Integration interval.
min_int = max([min(psnr1), min(psnr2)])
max_int = min([max(psnr1), max(psnr2)])
# find integral
p_int1 = numpy.polyint(poly1)
p_int2 = numpy.polyint(poly2)
# Calculate the integrated value over the interval we care about.
int1 = numpy.polyval(p_int1, max_int) - numpy.polyval(p_int1, min_int)
int2 = numpy.polyval(p_int2, max_int) - numpy.polyval(p_int2, min_int)
# Calculate the average improvement.
avg_exp_diff = (int2 - int1) / (max_int - min_int)
# In really bad formed data the exponent can grow too large.
# clamp it.
if avg_exp_diff > 200:
avg_exp_diff = 200
# Convert to a percentage.
avg_diff = (math.exp(avg_exp_diff) - 1) * 100
return avg_diff
示例10: bdsnr
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import polyint [as 别名]
def bdsnr(metric_set1, metric_set2):
"""
BJONTEGAARD Bjontegaard metric calculation
Bjontegaard's metric allows to compute the average gain in psnr between two
rate-distortion curves [1].
rate1,psnr1 - RD points for curve 1
rate2,psnr2 - RD points for curve 2
returns the calculated Bjontegaard metric 'dsnr'
code adapted from code written by : (c) 2010 Giuseppe Valenzise
http://www.mathworks.com/matlabcentral/fileexchange/27798-bjontegaard-metric/content/bjontegaard.m
"""
# pylint: disable=too-many-locals
# numpy seems to do tricks with its exports.
# pylint: disable=no-member
# map() is recommended against.
# pylint: disable=bad-builtin
rate1 = [x[0] for x in metric_set1]
psnr1 = [x[1] for x in metric_set1]
rate2 = [x[0] for x in metric_set2]
psnr2 = [x[1] for x in metric_set2]
log_rate1 = list(map(math.log, rate1))
log_rate2 = list(map(math.log, rate2))
# Best cubic poly fit for graph represented by log_ratex, psrn_x.
poly1 = numpy.polyfit(log_rate1, psnr1, 3)
poly2 = numpy.polyfit(log_rate2, psnr2, 3)
# Integration interval.
min_int = max([min(log_rate1), min(log_rate2)])
max_int = min([max(log_rate1), max(log_rate2)])
# Integrate poly1, and poly2.
p_int1 = numpy.polyint(poly1)
p_int2 = numpy.polyint(poly2)
# Calculate the integrated value over the interval we care about.
int1 = numpy.polyval(p_int1, max_int) - numpy.polyval(p_int1, min_int)
int2 = numpy.polyval(p_int2, max_int) - numpy.polyval(p_int2, min_int)
# Calculate the average improvement.
if max_int != min_int:
avg_diff = (int2 - int1) / (max_int - min_int)
else:
avg_diff = 0.0
return avg_diff
示例11: bdrate
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import polyint [as 别名]
def bdrate(metric_set1, metric_set2):
"""
BJONTEGAARD Bjontegaard metric calculation
Bjontegaard's metric allows to compute the average % saving in bitrate
between two rate-distortion curves [1].
rate1,psnr1 - RD points for curve 1
rate2,psnr2 - RD points for curve 2
adapted from code from: (c) 2010 Giuseppe Valenzise
"""
# numpy plays games with its exported functions.
# pylint: disable=no-member
# pylint: disable=too-many-locals
# pylint: disable=bad-builtin
rate1 = [x[0] for x in metric_set1]
psnr1 = [x[1] for x in metric_set1]
rate2 = [x[0] for x in metric_set2]
psnr2 = [x[1] for x in metric_set2]
log_rate1 = list(map(math.log, rate1))
log_rate2 = list(map(math.log, rate2))
# Best cubic poly fit for graph represented by log_ratex, psrn_x.
poly1 = numpy.polyfit(psnr1, log_rate1, 3)
poly2 = numpy.polyfit(psnr2, log_rate2, 3)
# Integration interval.
min_int = max([min(psnr1), min(psnr2)])
max_int = min([max(psnr1), max(psnr2)])
# find integral
p_int1 = numpy.polyint(poly1)
p_int2 = numpy.polyint(poly2)
# Calculate the integrated value over the interval we care about.
int1 = numpy.polyval(p_int1, max_int) - numpy.polyval(p_int1, min_int)
int2 = numpy.polyval(p_int2, max_int) - numpy.polyval(p_int2, min_int)
# Calculate the average improvement.
avg_exp_diff = (int2 - int1) / (max_int - min_int)
# In really bad formed data the exponent can grow too large.
# clamp it.
if avg_exp_diff > 200:
avg_exp_diff = 200
# Convert to a percentage.
avg_diff = (math.exp(avg_exp_diff) - 1) * 100
return avg_diff