本文整理汇总了Python中numpy.ones方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.ones方法的具体用法?Python numpy.ones怎么用?Python numpy.ones使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy
的用法示例。
在下文中一共展示了numpy.ones方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: add_intercept
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ones [as 别名]
def add_intercept(self, X):
"""Add 1's to data as last features."""
# Data shape
N, D = X.shape
# Check if there's not already an intercept column
if np.any(np.sum(X, axis=0) == N):
# Report
print('Intercept is not the last feature. Swapping..')
# Find which column contains the intercept
intercept_index = np.argwhere(np.sum(X, axis=0) == N)
# Swap intercept to last
X = X[:, np.setdiff1d(np.arange(D), intercept_index)]
# Add intercept as last column
X = np.hstack((X, np.ones((N, 1))))
# Append column of 1's to data, and increment dimensionality
return X, D+1
示例2: test_one_hot
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ones [as 别名]
def test_one_hot():
"""Check if one_hot returns correct label matrices."""
# Generate label vector
y = np.hstack((np.ones((10,))*0,
np.ones((10,))*1,
np.ones((10,))*2))
# Map to matrix
Y, labels = one_hot(y)
# Check for only 0's and 1's
assert len(np.setdiff1d(np.unique(Y), [0, 1])) == 0
# Check for correct labels
assert np.all(labels == np.unique(y))
# Check correct shape of matrix
assert Y.shape[0] == y.shape[0]
assert Y.shape[1] == len(labels)
示例3: test_cross_phase_2d
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ones [as 别名]
def test_cross_phase_2d(self, dask):
Ny, Nx = (32, 16)
x = np.linspace(0, 1, num=Nx, endpoint=False)
y = np.ones(Ny)
f = 6
phase_offset = np.pi/2
signal1 = np.cos(2*np.pi*f*x) # frequency = 1/(2*pi)
signal2 = np.cos(2*np.pi*f*x - phase_offset)
da1 = xr.DataArray(data=signal1*y[:,np.newaxis], name='a',
dims=['y','x'], coords={'y':y, 'x':x})
da2 = xr.DataArray(data=signal2*y[:,np.newaxis], name='b',
dims=['y','x'], coords={'y':y, 'x':x})
with pytest.raises(ValueError):
xrft.cross_phase(da1, da2, dim=['y','x'])
if dask:
da1 = da1.chunk({'x': 16})
da2 = da2.chunk({'x': 16})
cp = xrft.cross_phase(da1, da2, dim=['x'])
actual_phase_offset = cp.sel(freq_x=f).values
npt.assert_almost_equal(actual_phase_offset, phase_offset)
示例4: synthetic_field_xr
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ones [as 别名]
def synthetic_field_xr(N, dL, amp, s,
other_dim_sizes=None, dim_order=True,
chunks=None):
theta = xr.DataArray(synthetic_field(N, dL, amp, s),
dims=['y', 'x'],
coords={'y':range(N), 'x':range(N)}
)
if other_dim_sizes:
_da = xr.DataArray(np.ones(other_dim_sizes),
dims=['d%d'%i for i in range(len(other_dim_sizes))])
if dim_order:
theta = theta + _da
else:
theta = _da + theta
if chunks:
theta = theta.chunk(chunks)
return theta
示例5: classical_mds
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ones [as 别名]
def classical_mds(self, D):
'''
Classical multidimensional scaling
Parameters
----------
D : square 2D ndarray
Euclidean Distance Matrix (matrix containing squared distances between points
'''
# Apply MDS algorithm for denoising
n = D.shape[0]
J = np.eye(n) - np.ones((n,n))/float(n)
G = -0.5*np.dot(J, np.dot(D, J))
s, U = np.linalg.eig(G)
# we need to sort the eigenvalues in decreasing order
s = np.real(s)
o = np.argsort(s)
s = s[o[::-1]]
U = U[:,o[::-1]]
S = np.diag(s)[0:self.dim,:]
self.X = np.dot(np.sqrt(S),U.T)
示例6: wrap_variable
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ones [as 别名]
def wrap_variable(self, var):
"""wrap layer.w into variables"""
val = self.lay.w.get(var, None)
if val is None:
shape = self.lay.wshape[var]
args = [0., 1e-2, shape]
if 'moving_mean' in var:
val = np.zeros(shape)
elif 'moving_variance' in var:
val = np.ones(shape)
else:
val = np.random.normal(*args)
self.lay.w[var] = val.astype(np.float32)
self.act = 'Init '
if not self.var: return
val = self.lay.w[var]
self.lay.w[var] = tf.constant_initializer(val)
if var in self._SLIM: return
with tf.variable_scope(self.scope):
self.lay.w[var] = tf.get_variable(var,
shape = self.lay.wshape[var],
dtype = tf.float32,
initializer = self.lay.w[var])
示例7: _add_default_meta_keys
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ones [as 别名]
def _add_default_meta_keys(self, results):
"""Add default meta keys.
We set default meta keys including `pad_shape`, `scale_factor` and
`img_norm_cfg` to avoid the case where no `Resize`, `Normalize` and
`Pad` are implemented during the whole pipeline.
Args:
results (dict): Result dict contains the data to convert.
Returns:
results (dict): Updated result dict contains the data to convert.
"""
img = results['img']
results.setdefault('pad_shape', img.shape)
results.setdefault('scale_factor', 1.0)
num_channels = 1 if len(img.shape) < 3 else img.shape[2]
results.setdefault(
'img_norm_cfg',
dict(
mean=np.zeros(num_channels, dtype=np.float32),
std=np.ones(num_channels, dtype=np.float32),
to_rgb=False))
return results
示例8: __init__
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ones [as 别名]
def __init__(self, wave_len=254, wave_dif=64, buffer_size=5, loop_num=5, window=np.hanning(254)):
self.wave_len = wave_len
self.wave_dif = wave_dif
self.buffer_size = buffer_size
self.loop_num = loop_num
self.window = window
self.wave_buf = np.zeros(wave_len+wave_dif, dtype=float)
self.overwrap_buf = np.zeros(wave_dif*buffer_size+(wave_len-wave_dif), dtype=float)
self.spectrum_buffer = np.ones((self.buffer_size, self.wave_len), dtype=complex)
self.absolute_buffer = np.ones((self.buffer_size, self.wave_len), dtype=complex)
self.phase = np.zeros(self.wave_len, dtype=complex)
self.phase += np.random.random(self.wave_len)-0.5 + np.random.random(self.wave_len)*1j - 0.5j
self.phase[self.phase == 0] = 1
self.phase /= np.abs(self.phase)
示例9: predict_all
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ones [as 别名]
def predict_all(X, all_theta):
rows = X.shape[0]
params = X.shape[1]
num_labels = all_theta.shape[0]
# same as before, insert ones to match the shape
X = np.insert(X, 0, values=np.ones(rows), axis=1)
# convert to matrices
X = np.matrix(X)
all_theta = np.matrix(all_theta)
# compute the class probability for each class on each training instance
h = sigmoid(X * all_theta.T)
# create array of the index with the maximum probability
h_argmax = np.argmax(h, axis=1)
# because our array was zero-indexed we need to add one for the true label prediction
h_argmax = h_argmax + 1
return h_argmax
示例10: prepare_poly_data
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ones [as 别名]
def prepare_poly_data(*args, power):
"""
args: keep feeding in X, Xval, or Xtest
will return in the same order
"""
def prepare(x):
# expand feature
df = poly_features(x, power=power)
# normalization
ndarr = normalize_feature(df).as_matrix()
# add intercept term
return np.insert(ndarr, 0, np.ones(ndarr.shape[0]), axis=1)
return [prepare(x) for x in args]
示例11: create_sprite_image
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ones [as 别名]
def create_sprite_image(images):
if isinstance(images, list):
images = np.array(images)
img_h = images.shape[1]
img_w = images.shape[2]
# sprite 可以理解为所有小图片拼成的大正方形矩阵
m = int(np.ceil(np.sqrt(images.shape[0])))
# 使用全 1 来初始化最终的大图片
sprite_image = np.ones((img_h*m, img_w*m))
for i in range(m):
for j in range(m):
# 计算当前图片编号
cur = i * m + j
if cur < images.shape[0]:
# 将小图片的内容复制到最终的 sprite 图像
sprite_image[i*img_h:(i+1)*img_h,
j*img_w:(j+1)*img_w] = images[cur]
return sprite_image
# 加载 mnist 数据,制定 one_hot=False,得到的 labels 就是一个数字,而不是一个向量
示例12: color_overlap
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ones [as 别名]
def color_overlap(color1, *args):
'''
color_overlap(color1, color2...) yields the rgba value associated with overlaying color2 on top
of color1 followed by any additional colors (overlaid left to right). This respects alpha
values when calculating the results.
Note that colors may be lists of colors, in which case a matrix of RGBA values is yielded.
'''
args = list(args)
args.insert(0, color1)
rgba = np.asarray([0.5,0.5,0.5,0])
for c in args:
c = to_rgba(c)
a = c[...,3]
a0 = rgba[...,3]
if np.isclose(a0, 0).all(): rgba = np.ones(rgba.shape) * c
elif np.isclose(a, 0).all(): continue
else: rgba = times(a, c) + times(1-a, rgba)
return rgba
示例13: image_reslice
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ones [as 别名]
def image_reslice(image, spec, method=None, fill=0, dtype=None, weights=None, image_type=None):
'''
image_reslice(image, spec) yields a duplicate of the given image resliced to have the voxels
indicated by the given image spec. Note that spec may be an image itself.
Optional arguments that can be passed to image_interpolate() (asside from affine) are allowed
here and are passed through.
'''
if image_type is None and is_image(image): image_type = to_image_type(image)
spec = to_image_spec(spec)
image = to_image(image)
# we make a big mesh and interpolate at these points...
imsh = spec['image_shape']
(args, kw) = ([np.arange(n) for n in imsh[:3]], {'indexing': 'ij'})
ijk = np.asarray([u.flatten() for u in np.meshgrid(*args, **kw)])
ijk = np.dot(spec['affine'], np.vstack([ijk, np.ones([1,ijk.shape[1]])]))[:3]
# interpolate here...
u = image_interpolate(image, ijk, method=method, fill=fill, dtype=dtype, weights=weights)
return to_image((np.reshape(u, imsh), spec), image_type=image_type)
示例14: jacobian
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ones [as 别名]
def jacobian(self, p, into=None):
# transpose to be 3 x 2 x n
p = np.transpose(np.reshape(p, (-1, 3, 2)), (1,2,0))
# First, get the two legs...
(dx_ab, dy_ab) = p[1] - p[0]
(dx_ac, dy_ac) = p[2] - p[0]
(dx_bc, dy_bc) = p[2] - p[1]
# now, the area is half the z-value of the cross-product...
sarea0 = 0.5 * (dx_ab*dy_ac - dx_ac*dy_ab)
# but we want to abs it
dsarea0 = np.sign(sarea0)
z = np.transpose([[-dy_bc,dx_bc], [dy_ac,-dx_ac], [-dy_ab,dx_ab]], (2,0,1))
z = times(0.5*dsarea0, z)
m = numel(p)
n = p.shape[2]
ii = (np.arange(n) * np.ones([6, n])).T.flatten()
z = sps.csr_matrix((z.flatten(), (ii, np.arange(len(ii)))), shape=(n, m))
return safe_into(into, z)
示例15: angle_to_cortex
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ones [as 别名]
def angle_to_cortex(self, theta, rho):
'See help(neuropythy.registration.RetinotopyModel.angle_to_cortex).'
#TODO: This should be made to work correctly with visual area boundaries: this could be done
# by, for each area (e.g., V2) looking at its boundaries (with V1 and V3) and flipping the
# adjacent triangles so that there is complete coverage of each hemifield, guaranteed.
if not pimms.is_vector(theta): return self.angle_to_cortex([theta], [rho])[0]
theta = np.asarray(theta)
rho = np.asarray(rho)
zs = np.asarray(
rho * np.exp([np.complex(z) for z in 1j * ((90.0 - theta)/180.0*np.pi)]),
dtype=np.complex)
coords = np.asarray([zs.real, zs.imag]).T
if coords.shape[0] == 0: return np.zeros((0, len(self.visual_meshes), 2))
# we step through each area in the forward model and return the appropriate values
tx = self.transform
res = np.transpose(
[self.visual_meshes[area].interpolate(coords, 'cortical_coordinates', method='linear')
for area in sorted(self.visual_meshes.keys())],
(1,0,2))
if tx is not None:
res = np.asarray(
[np.dot(tx, np.vstack((area_xy.T, np.ones(len(area_xy)))))[0:2].T
for area_xy in res])
return res