本文整理汇总了Python中numpy.object_方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.object_方法的具体用法?Python numpy.object_怎么用?Python numpy.object_使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy
的用法示例。
在下文中一共展示了numpy.object_方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_object_array_refcount_self_assign
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import object_ [as 别名]
def test_object_array_refcount_self_assign(self):
# Ticket #711
class VictimObject(object):
deleted = False
def __del__(self):
self.deleted = True
d = VictimObject()
arr = np.zeros(5, dtype=np.object_)
arr[:] = d
del d
arr[:] = arr # refcount of 'd' might hit zero here
assert_(not arr[0].deleted)
arr[:] = arr # trying to induce a segfault by doing it again...
assert_(not arr[0].deleted)
示例2: test_constructor_from_index_dtlike
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import object_ [as 别名]
def test_constructor_from_index_dtlike(self, cast_as_obj, index):
if cast_as_obj:
result = pd.Index(index.astype(object))
else:
result = pd.Index(index)
tm.assert_index_equal(result, index)
if isinstance(index, pd.DatetimeIndex):
assert result.tz == index.tz
if cast_as_obj:
# GH#23524 check that Index(dti, dtype=object) does not
# incorrectly raise ValueError, and that nanoseconds are not
# dropped
index += pd.Timedelta(nanoseconds=50)
result = pd.Index(index, dtype=object)
assert result.dtype == np.object_
assert list(result) == list(index)
示例3: test_astype_datetime
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import object_ [as 别名]
def test_astype_datetime(self):
s = Series(iNaT, dtype='M8[ns]', index=lrange(5))
s = s.astype('O')
assert s.dtype == np.object_
s = Series([datetime(2001, 1, 2, 0, 0)])
s = s.astype('O')
assert s.dtype == np.object_
s = Series([datetime(2001, 1, 2, 0, 0) for i in range(3)])
s[1] = np.nan
assert s.dtype == 'M8[ns]'
s = s.astype('O')
assert s.dtype == np.object_
示例4: test_fromDict
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import object_ [as 别名]
def test_fromDict(self):
data = {'a': 0, 'b': 1, 'c': 2, 'd': 3}
series = Series(data)
assert tm.is_sorted(series.index)
data = {'a': 0, 'b': '1', 'c': '2', 'd': datetime.now()}
series = Series(data)
assert series.dtype == np.object_
data = {'a': 0, 'b': '1', 'c': '2', 'd': '3'}
series = Series(data)
assert series.dtype == np.object_
data = {'a': '0', 'b': '1'}
series = Series(data, dtype=float)
assert series.dtype == np.float64
示例5: test_fromValue
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import object_ [as 别名]
def test_fromValue(self, datetime_series):
nans = Series(np.NaN, index=datetime_series.index)
assert nans.dtype == np.float_
assert len(nans) == len(datetime_series)
strings = Series('foo', index=datetime_series.index)
assert strings.dtype == np.object_
assert len(strings) == len(datetime_series)
d = datetime.now()
dates = Series(d, index=datetime_series.index)
assert dates.dtype == 'M8[ns]'
assert len(dates) == len(datetime_series)
# GH12336
# Test construction of categorical series from value
categorical = Series(0, index=datetime_series.index, dtype="category")
expected = Series(0, index=datetime_series.index).astype("category")
assert categorical.dtype == 'category'
assert len(categorical) == len(datetime_series)
tm.assert_series_equal(categorical, expected)
示例6: test_zfill
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import object_ [as 别名]
def test_zfill(self):
values = Series(['1', '22', 'aaa', '333', '45678'])
result = values.str.zfill(5)
expected = Series(['00001', '00022', '00aaa', '00333', '45678'])
tm.assert_series_equal(result, expected)
expected = np.array([v.zfill(5) for v in values.values],
dtype=np.object_)
tm.assert_numpy_array_equal(result.values, expected)
result = values.str.zfill(3)
expected = Series(['001', '022', 'aaa', '333', '45678'])
tm.assert_series_equal(result, expected)
expected = np.array([v.zfill(3) for v in values.values],
dtype=np.object_)
tm.assert_numpy_array_equal(result.values, expected)
values = Series(['1', np.nan, 'aaa', np.nan, '45678'])
result = values.str.zfill(5)
expected = Series(['00001', np.nan, '00aaa', np.nan, '45678'])
tm.assert_series_equal(result, expected)
示例7: test_convert_objects_leave_decimal_alone
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import object_ [as 别名]
def test_convert_objects_leave_decimal_alone():
s = Series(lrange(5))
labels = np.array(['a', 'b', 'c', 'd', 'e'], dtype='O')
def convert_fast(x):
return Decimal(str(x.mean()))
def convert_force_pure(x):
# base will be length 0
assert (len(x.values.base) > 0)
return Decimal(str(x.mean()))
grouped = s.groupby(labels)
result = grouped.agg(convert_fast)
assert result.dtype == np.object_
assert isinstance(result[0], Decimal)
result = grouped.agg(convert_force_pure)
assert result.dtype == np.object_
assert isinstance(result[0], Decimal)
示例8: test_stat_operators_attempt_obj_array
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import object_ [as 别名]
def test_stat_operators_attempt_obj_array(self, method):
# GH 676
data = {
'a': [-0.00049987540199591344, -0.0016467257772919831,
0.00067695870775883013],
'b': [-0, -0, 0.0],
'c': [0.00031111847529610595, 0.0014902627951905339,
-0.00094099200035979691]
}
df1 = DataFrame(data, index=['foo', 'bar', 'baz'], dtype='O')
df2 = DataFrame({0: [np.nan, 2], 1: [np.nan, 3],
2: [np.nan, 4]}, dtype=object)
for df in [df1, df2]:
assert df.values.dtype == np.object_
result = getattr(df, method)(1)
expected = getattr(df.astype('f8'), method)(1)
if method in ['sum', 'prod']:
tm.assert_series_equal(result, expected)
示例9: test_constructor_dict_cast
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import object_ [as 别名]
def test_constructor_dict_cast(self):
# cast float tests
test_data = {
'A': {'1': 1, '2': 2},
'B': {'1': '1', '2': '2', '3': '3'},
}
frame = DataFrame(test_data, dtype=float)
assert len(frame) == 3
assert frame['B'].dtype == np.float64
assert frame['A'].dtype == np.float64
frame = DataFrame(test_data)
assert len(frame) == 3
assert frame['B'].dtype == np.object_
assert frame['A'].dtype == np.float64
# can't cast to float
test_data = {
'A': dict(zip(range(20), tm.makeStringIndex(20))),
'B': dict(zip(range(15), np.random.randn(15)))
}
frame = DataFrame(test_data, dtype=float)
assert len(frame) == 20
assert frame['A'].dtype == np.object_
assert frame['B'].dtype == np.float64
示例10: test_is_dtype
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import object_ [as 别名]
def test_is_dtype(self):
assert PeriodDtype.is_dtype(self.dtype)
assert PeriodDtype.is_dtype('period[D]')
assert PeriodDtype.is_dtype('period[3D]')
assert PeriodDtype.is_dtype(PeriodDtype('3D'))
assert PeriodDtype.is_dtype('period[U]')
assert PeriodDtype.is_dtype('period[S]')
assert PeriodDtype.is_dtype(PeriodDtype('U'))
assert PeriodDtype.is_dtype(PeriodDtype('S'))
assert not PeriodDtype.is_dtype('D')
assert not PeriodDtype.is_dtype('3D')
assert not PeriodDtype.is_dtype('U')
assert not PeriodDtype.is_dtype('S')
assert not PeriodDtype.is_dtype('foo')
assert not PeriodDtype.is_dtype(np.object_)
assert not PeriodDtype.is_dtype(np.int64)
assert not PeriodDtype.is_dtype(np.float64)
示例11: isdecoded
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import object_ [as 别名]
def isdecoded(self, obj):
return obj.dtype.type in {np.str_, np.object_, np.datetime64}
示例12: _empty
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import object_ [as 别名]
def _empty(self, length, dtype):
if dtype is not None and dtype == np.float64:
rtn = np.empty(length, dtype)
rtn[:] = np.nan
return rtn
else:
return np.empty(length, dtype=np.object_)
示例13: test_converters_cornercases
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import object_ [as 别名]
def test_converters_cornercases(self):
# Test the conversion to datetime.
converter = {
'date': lambda s: strptime(s, '%Y-%m-%d %H:%M:%SZ')}
data = TextIO('2009-02-03 12:00:00Z, 72214.0')
test = np.ndfromtxt(data, delimiter=',', dtype=None,
names=['date', 'stid'], converters=converter)
control = np.array((datetime(2009, 2, 3), 72214.),
dtype=[('date', np.object_), ('stid', float)])
assert_equal(test, control)
示例14: test_dtype_error
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import object_ [as 别名]
def test_dtype_error(self):
for f in self.nanfuncs:
for dtype in [np.bool_, np.int_, np.object_]:
assert_raises(TypeError, f, _ndat, axis=1, dtype=dtype)
示例15: test_out_dtype_error
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import object_ [as 别名]
def test_out_dtype_error(self):
for f in self.nanfuncs:
for dtype in [np.bool_, np.int_, np.object_]:
out = np.empty(_ndat.shape[0], dtype=dtype)
assert_raises(TypeError, f, _ndat, axis=1, out=out)