本文整理汇总了Python中numpy.norm方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.norm方法的具体用法?Python numpy.norm怎么用?Python numpy.norm使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy
的用法示例。
在下文中一共展示了numpy.norm方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: as_rotation_vector
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import norm [as 别名]
def as_rotation_vector(q):
"""Convert input quaternion to the axis-angle representation
Note that if any of the input quaternions has norm zero, no error is
raised, but NaNs will appear in the output.
Parameters
----------
q: quaternion or array of quaternions
The quaternion(s) need not be normalized, but must all be nonzero
Returns
-------
rot: float array
Output shape is q.shape+(3,). Each vector represents the axis of
the rotation, with norm proportional to the angle of the rotation in
radians.
"""
return as_float_array(2*np.log(np.normalized(q)))[..., 1:]
示例2: from_rotation_vector
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import norm [as 别名]
def from_rotation_vector(rot):
"""Convert input 3-vector in axis-angle representation to unit quaternion
Parameters
----------
rot: (Nx3) float array
Each vector represents the axis of the rotation, with norm
proportional to the angle of the rotation in radians.
Returns
-------
q: array of quaternions
Unit quaternions resulting in rotations corresponding to input
rotations. Output shape is rot.shape[:-1].
"""
rot = np.array(rot, copy=False)
quats = np.zeros(rot.shape[:-1]+(4,))
quats[..., 1:] = rot[...]/2
quats = as_quat_array(quats)
return np.exp(quats)
示例3: test_as_euler_angles
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import norm [as 别名]
def test_as_euler_angles():
np.random.seed(1843)
random_angles = [[np.random.uniform(-np.pi, np.pi),
np.random.uniform(-np.pi, np.pi),
np.random.uniform(-np.pi, np.pi)]
for i in range(5000)]
for alpha, beta, gamma in random_angles:
R1 = quaternion.from_euler_angles(alpha, beta, gamma)
R2 = quaternion.from_euler_angles(*list(quaternion.as_euler_angles(R1)))
d = quaternion.rotation_intrinsic_distance(R1, R2)
assert d < 6e3*eps, ((alpha, beta, gamma), R1, R2, d) # Can't use allclose here; we don't care about rotor sign
q0 = quaternion.quaternion(0, 0.6, 0.8, 0)
assert q0.norm() == 1.0
assert abs(q0 - quaternion.from_euler_angles(*list(quaternion.as_euler_angles(q0)))) < 1.e-15
# Unary bool returners
示例4: test_quaternion_square
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import norm [as 别名]
def test_quaternion_square(Qs):
square_precision = 1.e-15
for q in Qs[Qs_finite]:
assert np.norm(q*q - q**2) < square_precision
a = np.array([q])
assert np.norm(a**2 - np.array([q**2])) < square_precision
示例5: getError
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import norm [as 别名]
def getError(self):
"""For given h, generate A[h], f and A(f) and return norm of error."""
return 1.
示例6: pdf
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import norm [as 别名]
def pdf(self, input_values, x):
mu = input_values[0]
sigma = input_values[1]
pdf = np.norm(mu, sigma).pdf(x)
return pdf
示例7: pdf
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import norm [as 别名]
def pdf(self, input_values, x):
mu = input_values[0]
sigma = input_values[1]
pdf = np.norm(mu,sigma).pdf(x)
return pdf
示例8: as_rotation_matrix
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import norm [as 别名]
def as_rotation_matrix(q):
"""Convert input quaternion to 3x3 rotation matrix
Parameters
----------
q: quaternion or array of quaternions
The quaternion(s) need not be normalized, but must all be nonzero
Returns
-------
rot: float array
Output shape is q.shape+(3,3). This matrix should multiply (from
the left) a column vector to produce the rotated column vector.
Raises
------
ZeroDivisionError
If any of the input quaternions have norm 0.0.
"""
if q.shape == () and not isinstance(q, np.ndarray): # This is just a single quaternion
n = q.norm()
if n == 0.0:
raise ZeroDivisionError("Input to `as_rotation_matrix({0})` has zero norm".format(q))
elif abs(n-1.0) < _eps: # Input q is basically normalized
return np.array([
[1 - 2*(q.y**2 + q.z**2), 2*(q.x*q.y - q.z*q.w), 2*(q.x*q.z + q.y*q.w)],
[2*(q.x*q.y + q.z*q.w), 1 - 2*(q.x**2 + q.z**2), 2*(q.y*q.z - q.x*q.w)],
[2*(q.x*q.z - q.y*q.w), 2*(q.y*q.z + q.x*q.w), 1 - 2*(q.x**2 + q.y**2)]
])
else: # Input q is not normalized
return np.array([
[1 - 2*(q.y**2 + q.z**2)/n, 2*(q.x*q.y - q.z*q.w)/n, 2*(q.x*q.z + q.y*q.w)/n],
[2*(q.x*q.y + q.z*q.w)/n, 1 - 2*(q.x**2 + q.z**2)/n, 2*(q.y*q.z - q.x*q.w)/n],
[2*(q.x*q.z - q.y*q.w)/n, 2*(q.y*q.z + q.x*q.w)/n, 1 - 2*(q.x**2 + q.y**2)/n]
])
else: # This is an array of quaternions
n = np.norm(q)
if np.any(n == 0.0):
raise ZeroDivisionError("Array input to `as_rotation_matrix` has at least one element with zero norm")
else: # Assume input q is not normalized
m = np.empty(q.shape + (3, 3))
q = as_float_array(q)
m[..., 0, 0] = 1.0 - 2*(q[..., 2]**2 + q[..., 3]**2)/n
m[..., 0, 1] = 2*(q[..., 1]*q[..., 2] - q[..., 3]*q[..., 0])/n
m[..., 0, 2] = 2*(q[..., 1]*q[..., 3] + q[..., 2]*q[..., 0])/n
m[..., 1, 0] = 2*(q[..., 1]*q[..., 2] + q[..., 3]*q[..., 0])/n
m[..., 1, 1] = 1.0 - 2*(q[..., 1]**2 + q[..., 3]**2)/n
m[..., 1, 2] = 2*(q[..., 2]*q[..., 3] - q[..., 1]*q[..., 0])/n
m[..., 2, 0] = 2*(q[..., 1]*q[..., 3] - q[..., 2]*q[..., 0])/n
m[..., 2, 1] = 2*(q[..., 2]*q[..., 3] + q[..., 1]*q[..., 0])/n
m[..., 2, 2] = 1.0 - 2*(q[..., 1]**2 + q[..., 2]**2)/n
return m
示例9: as_euler_angles
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import norm [as 别名]
def as_euler_angles(q):
"""Open Pandora's Box
If somebody is trying to make you use Euler angles, tell them no, and
walk away, and go and tell your mum.
You don't want to use Euler angles. They are awful. Stay away. It's
one thing to convert from Euler angles to quaternions; at least you're
moving in the right direction. But to go the other way?! It's just not
right.
Assumes the Euler angles correspond to the quaternion R via
R = exp(alpha*z/2) * exp(beta*y/2) * exp(gamma*z/2)
The angles are naturally in radians.
NOTE: Before opening an issue reporting something "wrong" with this
function, be sure to read all of the following page, *especially* the
very last section about opening issues or pull requests.
<https://github.com/moble/quaternion/wiki/Euler-angles-are-horrible>
Parameters
----------
q: quaternion or array of quaternions
The quaternion(s) need not be normalized, but must all be nonzero
Returns
-------
alpha_beta_gamma: float array
Output shape is q.shape+(3,). These represent the angles (alpha,
beta, gamma) in radians, where the normalized input quaternion
represents `exp(alpha*z/2) * exp(beta*y/2) * exp(gamma*z/2)`.
Raises
------
AllHell
...if you try to actually use Euler angles, when you could have
been using quaternions like a sensible person.
"""
alpha_beta_gamma = np.empty(q.shape + (3,), dtype=np.float)
n = np.norm(q)
q = as_float_array(q)
alpha_beta_gamma[..., 0] = np.arctan2(q[..., 3], q[..., 0]) + np.arctan2(-q[..., 1], q[..., 2])
alpha_beta_gamma[..., 1] = 2*np.arccos(np.sqrt((q[..., 0]**2 + q[..., 3]**2)/n))
alpha_beta_gamma[..., 2] = np.arctan2(q[..., 3], q[..., 0]) - np.arctan2(-q[..., 1], q[..., 2])
return alpha_beta_gamma
示例10: linearized_dc_power_flow
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import norm [as 别名]
def linearized_dc_power_flow(Ybus, Sbus, Ibus, V0, ref, pq, pv):
"""
Solves a DC power flow.
:param Ybus: Normal circuit admittance matrix
:param Sbus: Complex power injections at all the nodes
:param Ibus: Complex current injections at all the nodes
:param V0: Array of complex seed voltage (it contains the ref voltages)
:param ref: array of the indices of the slack nodes
:param pvpq: array of the indices of the non-slack nodes
:param pq: array of the indices of the pq nodes
:param pv: array of the indices of the pv nodes
:return:
Complex voltage solution
Converged: Always true
Solution error
Computed power injections given the found solution
"""
pvpq = np.r_[pv, pq].astype(int)
# Decompose the voltage in angle and magnitude
Va_ref = np.angle(V0[ref]) # we only need the angles at the slack nodes
Vm = np.abs(V0)
# initialize result vector
Va = np.empty(len(V0))
# reconvert the pqpv vector to a matrix so that we can call numpy directly with it
pvpq_ = np.matrix(pvpq)
# Compile the reduced imaginary impedance matrix
Bpqpv = Ybus.imag[pvpq_.T, pvpq_]
Bref = Ybus.imag[pvpq_.T, ref]
# compose the reduced power injections
# Since we have removed the slack nodes, we must account their influence as injections Bref * Va_ref
Pinj = Sbus[pvpq].real + (- Bref * Va_ref + Ibus[pvpq].real) * Vm[pvpq]
# update angles for non-reference buses
Va[pvpq] = spsolve(Bpqpv, Pinj)
Va[ref] = Va_ref
# re assemble the voltage
V = Vm * np.exp(1j * Va)
# compute the calculated power injection and the error of the voltage solution
Scalc = V * np.conj(Ybus * V - Ibus)
# compute the power mismatch between the specified power Sbus and the calculated power Scalc
mis = Scalc - Sbus # complex power mismatch
F = np.r_[mis[pv].real, mis[pq].real, mis[pq].imag] # concatenate again
# check for convergence
normF = np.linalg.norm(F, np.Inf)
return V, True, normF