本文整理汇总了Python中numpy.ndarray.ravel方法的典型用法代码示例。如果您正苦于以下问题:Python ndarray.ravel方法的具体用法?Python ndarray.ravel怎么用?Python ndarray.ravel使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy.ndarray
的用法示例。
在下文中一共展示了ndarray.ravel方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: reduce
# 需要导入模块: from numpy import ndarray [as 别名]
# 或者: from numpy.ndarray import ravel [as 别名]
def reduce(self, target, axis=None):
"Reduce target along the given axis."
target = narray(target, copy=False, subok=True)
m = getmask(target)
if axis is not None:
kargs = {'axis': axis}
else:
kargs = {}
target = target.ravel()
if not (m is nomask):
m = m.ravel()
if m is nomask:
t = self.ufunc.reduce(target, **kargs)
else:
target = target.filled(
self.fill_value_func(target)).view(type(target))
t = self.ufunc.reduce(target, **kargs)
m = umath.logical_and.reduce(m, **kargs)
if hasattr(t, '_mask'):
t._mask = m
elif m:
t = masked
return t
示例2: __getitem__
# 需要导入模块: from numpy import ndarray [as 别名]
# 或者: from numpy.ndarray import ravel [as 别名]
def __getitem__(self, indx):
result = self.dataiter.__getitem__(indx).view(type(self.ma))
if self.maskiter is not None:
_mask = self.maskiter.__getitem__(indx)
if isinstance(_mask, ndarray):
# set shape to match that of data; this is needed for matrices
_mask.shape = result.shape
result._mask = _mask
elif isinstance(_mask, np.void):
return mvoid(result, mask=_mask, hardmask=self.ma._hardmask)
elif _mask: # Just a scalar, masked
return masked
return result
# This won't work if ravel makes a copy
示例3: _set_flat
# 需要导入模块: from numpy import ndarray [as 别名]
# 或者: from numpy.ndarray import ravel [as 别名]
def _set_flat(self, value):
"Set a flattened version of self to value."
y = self.ravel()
y[:] = value
示例4: compressed
# 需要导入模块: from numpy import ndarray [as 别名]
# 或者: from numpy.ndarray import ravel [as 别名]
def compressed(self):
"""
Return all the non-masked data as a 1-D array.
Returns
-------
data : ndarray
A new `ndarray` holding the non-masked data is returned.
Notes
-----
The result is **not** a MaskedArray!
Examples
--------
>>> x = np.ma.array(np.arange(5), mask=[0]*2 + [1]*3)
>>> x.compressed()
array([0, 1])
>>> type(x.compressed())
<type 'numpy.ndarray'>
"""
data = ndarray.ravel(self._data)
if self._mask is not nomask:
data = data.compress(np.logical_not(ndarray.ravel(self._mask)))
return data
示例5: outer
# 需要导入模块: from numpy import ndarray [as 别名]
# 或者: from numpy.ndarray import ravel [as 别名]
def outer(a, b):
"maskedarray version of the numpy function."
fa = filled(a, 0).ravel()
fb = filled(b, 0).ravel()
d = np.outer(fa, fb)
ma = getmask(a)
mb = getmask(b)
if ma is nomask and mb is nomask:
return masked_array(d)
ma = getmaskarray(a)
mb = getmaskarray(b)
m = make_mask(1 - np.outer(1 - ma, 1 - mb), copy=0)
return masked_array(d, mask=m)
示例6: flatten_structured_array
# 需要导入模块: from numpy import ndarray [as 别名]
# 或者: from numpy.ndarray import ravel [as 别名]
def flatten_structured_array(a):
"""
Flatten a structured array.
The data type of the output is chosen such that it can represent all of the
(nested) fields.
Parameters
----------
a : structured array
Returns
-------
output : masked array or ndarray
A flattened masked array if the input is a masked array, otherwise a
standard ndarray.
Examples
--------
>>> ndtype = [('a', int), ('b', float)]
>>> a = np.array([(1, 1), (2, 2)], dtype=ndtype)
>>> flatten_structured_array(a)
array([[1., 1.],
[2., 2.]])
"""
def flatten_sequence(iterable):
"""
Flattens a compound of nested iterables.
"""
for elm in iter(iterable):
if hasattr(elm, '__iter__'):
for f in flatten_sequence(elm):
yield f
else:
yield elm
a = np.asanyarray(a)
inishape = a.shape
a = a.ravel()
if isinstance(a, MaskedArray):
out = np.array([tuple(flatten_sequence(d.item())) for d in a._data])
out = out.view(MaskedArray)
out._mask = np.array([tuple(flatten_sequence(d.item()))
for d in getmaskarray(a)])
else:
out = np.array([tuple(flatten_sequence(d.item())) for d in a])
if len(inishape) > 1:
newshape = list(out.shape)
newshape[0] = inishape
out.shape = tuple(flatten_sequence(newshape))
return out
示例7: ravel
# 需要导入模块: from numpy import ndarray [as 别名]
# 或者: from numpy.ndarray import ravel [as 别名]
def ravel(self, order='C'):
"""
Returns a 1D version of self, as a view.
Parameters
----------
order : {'C', 'F', 'A', 'K'}, optional
The elements of `a` are read using this index order. 'C' means to
index the elements in C-like order, with the last axis index
changing fastest, back to the first axis index changing slowest.
'F' means to index the elements in Fortran-like index order, with
the first index changing fastest, and the last index changing
slowest. Note that the 'C' and 'F' options take no account of the
memory layout of the underlying array, and only refer to the order
of axis indexing. 'A' means to read the elements in Fortran-like
index order if `m` is Fortran *contiguous* in memory, C-like order
otherwise. 'K' means to read the elements in the order they occur
in memory, except for reversing the data when strides are negative.
By default, 'C' index order is used.
Returns
-------
MaskedArray
Output view is of shape ``(self.size,)`` (or
``(np.ma.product(self.shape),)``).
Examples
--------
>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print(x)
[[1 -- 3]
[-- 5 --]
[7 -- 9]]
>>> print(x.ravel())
[1 -- 3 -- 5 -- 7 -- 9]
"""
r = ndarray.ravel(self._data, order=order).view(type(self))
r._update_from(self)
if self._mask is not nomask:
r._mask = ndarray.ravel(self._mask, order=order).reshape(r.shape)
else:
r._mask = nomask
return r
示例8: ravel
# 需要导入模块: from numpy import ndarray [as 别名]
# 或者: from numpy.ndarray import ravel [as 别名]
def ravel(self, order='C'):
"""
Returns a 1D version of self, as a view.
Parameters
----------
order : {'C', 'F', 'A', 'K'}, optional
The elements of `a` are read using this index order. 'C' means to
index the elements in C-like order, with the last axis index
changing fastest, back to the first axis index changing slowest.
'F' means to index the elements in Fortran-like index order, with
the first index changing fastest, and the last index changing
slowest. Note that the 'C' and 'F' options take no account of the
memory layout of the underlying array, and only refer to the order
of axis indexing. 'A' means to read the elements in Fortran-like
index order if `m` is Fortran *contiguous* in memory, C-like order
otherwise. 'K' means to read the elements in the order they occur
in memory, except for reversing the data when strides are negative.
By default, 'C' index order is used.
Returns
-------
MaskedArray
Output view is of shape ``(self.size,)`` (or
``(np.ma.product(self.shape),)``).
Examples
--------
>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> print x
[[1 -- 3]
[-- 5 --]
[7 -- 9]]
>>> print x.ravel()
[1 -- 3 -- 5 -- 7 -- 9]
"""
r = ndarray.ravel(self._data, order=order).view(type(self))
r._update_from(self)
if self._mask is not nomask:
r._mask = ndarray.ravel(self._mask, order=order).reshape(r.shape)
else:
r._mask = nomask
return r