当前位置: 首页>>代码示例>>Python>>正文


Python numpy.ndarray方法代码示例

本文整理汇总了Python中numpy.ndarray方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.ndarray方法的具体用法?Python numpy.ndarray怎么用?Python numpy.ndarray使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy的用法示例。


在下文中一共展示了numpy.ndarray方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_cls_results

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ndarray [as 别名]
def get_cls_results(det_results, annotations, class_id):
    """Get det results and gt information of a certain class.

    Args:
        det_results (list[list]): Same as `eval_map()`.
        annotations (list[dict]): Same as `eval_map()`.
        class_id (int): ID of a specific class.

    Returns:
        tuple[list[np.ndarray]]: detected bboxes, gt bboxes, ignored gt bboxes
    """
    cls_dets = [img_res[class_id] for img_res in det_results]
    cls_gts = []
    cls_gts_ignore = []
    for ann in annotations:
        gt_inds = ann['labels'] == class_id
        cls_gts.append(ann['bboxes'][gt_inds, :])

        if ann.get('labels_ignore', None) is not None:
            ignore_inds = ann['labels_ignore'] == class_id
            cls_gts_ignore.append(ann['bboxes_ignore'][ignore_inds, :])
        else:
            cls_gts_ignore.append(np.empty((0, 4), dtype=np.float32))

    return cls_dets, cls_gts, cls_gts_ignore 
开发者ID:open-mmlab,项目名称:mmdetection,代码行数:27,代码来源:mean_ap.py

示例2: __init__

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ndarray [as 别名]
def __init__(self, masks, height, width):
        self.height = height
        self.width = width
        if len(masks) == 0:
            self.masks = np.empty((0, self.height, self.width), dtype=np.uint8)
        else:
            assert isinstance(masks, (list, np.ndarray))
            if isinstance(masks, list):
                assert isinstance(masks[0], np.ndarray)
                assert masks[0].ndim == 2  # (H, W)
            else:
                assert masks.ndim == 3  # (N, H, W)

            self.masks = np.stack(masks).reshape(-1, height, width)
            assert self.masks.shape[1] == self.height
            assert self.masks.shape[2] == self.width 
开发者ID:open-mmlab,项目名称:mmdetection,代码行数:18,代码来源:structures.py

示例3: __call__

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ndarray [as 别名]
def __call__(self, video):
    """
    Args:
        video (numpy.ndarray): Video to be scaled.
    Returns:
        numpy.ndarray: Rescaled video.
    """
    if isinstance(self.size, int):
      w, h = video.shape[-2], video.shape[-3]
      if (w <= h and w == self.size) or (h <= w and h == self.size):
        return video
      if w < h:
        ow = self.size
        oh = int(self.size*h/w)
        return resize(video, (ow, oh), self.interpolation)
      else:
        oh = self.size
        ow = int(self.size*w/h)
        return resize(video, (ow, oh), self.interpolation)
    else:
      return resize(video, self.size, self.interpolation) 
开发者ID:jthsieh,项目名称:DDPAE-video-prediction,代码行数:23,代码来源:video_transforms.py

示例4: _serialize_data

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ndarray [as 别名]
def _serialize_data(self, data):

        # Default to raw bytes
        type_ = _BYTES

        if isinstance(data, np.ndarray):
        # When the data is a numpy array, use the more compact native
        # numpy format.
            buf = io.BytesIO()
            np.save(buf, data)
            data = buf.getvalue()
            type_ = _NUMPY

        elif not isinstance(data, (bytearray, bytes)):
        # Everything else except byte data is serialized in pickle format.
            data = pickle.dumps(data)
            type_ = _PICKLE

        if self.compress:
        # Optional compression
            data = lz4.frame.compress(data)

        return type_, data 
开发者ID:mme,项目名称:vergeml,代码行数:25,代码来源:cache.py

示例5: read_common_mat

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ndarray [as 别名]
def read_common_mat(fd):
    """ 
        Read common matrix(for class Matrix in kaldi setup)
        see matrix/kaldi-matrix.cc::
            void Matrix<Real>::Read(std::istream & is, bool binary, bool add)
        Return a numpy ndarray object
    """
    mat_type = read_token(fd)
    print_info(f'\tType of the common matrix: {mat_type}')
    if mat_type not in ["FM", "DM"]:
        raise RuntimeError(f"Unknown matrix type in kaldi: {mat_type}")
    float_size = 4 if mat_type == 'FM' else 8
    float_type = np.float32 if mat_type == 'FM' else np.float64
    num_rows = read_int32(fd)
    num_cols = read_int32(fd)
    print_info(f'\tSize of the common matrix: {num_rows} x {num_cols}')
    mat_data = fd.read(float_size * num_cols * num_rows)
    mat = np.fromstring(mat_data, dtype=float_type)
    return mat.reshape(num_rows, num_cols) 
开发者ID:funcwj,项目名称:kaldi-python-io,代码行数:21,代码来源:_io_kernel.py

示例6: read_compress_mat

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ndarray [as 别名]
def read_compress_mat(fd):
    """ 
        Reference to function Read in CompressMatrix
        Return a numpy ndarray object
    """
    cps_type = read_token(fd)
    print_info(f'\tFollowing matrix type: {cps_type}')
    head = struct.unpack('ffii', fd.read(16))
    print_info(f'\tCompress matrix header: {head}')
    # 8: sizeof PerColHeader
    # head: {min_value, range, num_rows, num_cols}
    num_rows, num_cols = head[2], head[3]
    if cps_type == 'CM':
        remain_size = num_cols * (8 + num_rows)
    elif cps_type == 'CM2':
        remain_size = 2 * num_rows * num_cols
    elif cps_type == 'CM3':
        remain_size = num_rows * num_cols
    else:
        throw_on_error(False, f'Unknown matrix compressing type: {cps_type}')
    # now uncompress it
    compress_data = fd.read(remain_size)
    mat = uncompress(compress_data, cps_type, head)
    return mat 
开发者ID:funcwj,项目名称:kaldi-python-io,代码行数:26,代码来源:_io_kernel.py

示例7: serialize_ndarray_b64

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ndarray [as 别名]
def serialize_ndarray_b64(o):
    """
    Serializes a :obj:`numpy.ndarray` in a format where the datatype and shape are
    human-readable, but the array data itself is binary64 encoded.

    Args:
        o (:obj:`numpy.ndarray`): :obj:`ndarray` to be serialized.

    Returns:
        A dictionary that can be passed to :obj:`json.dumps`.
    """
    if o.flags['C_CONTIGUOUS']:
        o_data = o.data
    else:
        o_data = np.ascontiguousarray(o).data
    data_b64 = base64.b64encode(o_data)
    return dict(
        _type='np.ndarray',
        data=data_b64.decode('utf-8'),
        dtype=o.dtype,
        shape=o.shape) 
开发者ID:gregreen,项目名称:dustmaps,代码行数:23,代码来源:json_serializers.py

示例8: serialize_ndarray_npy

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ndarray [as 别名]
def serialize_ndarray_npy(o):
    """
    Serializes a :obj:`numpy.ndarray` using numpy's built-in :obj:`save` function.
    This produces totally unreadable (and very un-JSON-like) results (in "npy"
    format), but it's basically guaranteed to work in 100% of cases.

    Args:
        o (:obj:`numpy.ndarray`): :obj:`ndarray` to be serialized.

    Returns:
        A dictionary that can be passed to :obj:`json.dumps`.
    """
    with io.BytesIO() as f:
        np.save(f, o)
        f.seek(0)
        serialized = json.dumps(f.read().decode('latin-1'))
    return dict(
        _type='np.ndarray',
        npy=serialized) 
开发者ID:gregreen,项目名称:dustmaps,代码行数:21,代码来源:json_serializers.py

示例9: deserialize_ndarray_npy

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ndarray [as 别名]
def deserialize_ndarray_npy(d):
    """
    Deserializes a JSONified :obj:`numpy.ndarray` that was created using numpy's
    :obj:`save` function.

    Args:
        d (:obj:`dict`): A dictionary representation of an :obj:`ndarray` object, created
            using :obj:`numpy.save`.

    Returns:
        An :obj:`ndarray` object.
    """
    with io.BytesIO() as f:
        f.write(json.loads(d['npy']).encode('latin-1'))
        f.seek(0)
        return np.load(f) 
开发者ID:gregreen,项目名称:dustmaps,代码行数:18,代码来源:json_serializers.py

示例10: xyxy2xywh

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ndarray [as 别名]
def xyxy2xywh(self, bbox):
        """Convert ``xyxy`` style bounding boxes to ``xywh`` style for COCO
        evaluation.

        Args:
            bbox (numpy.ndarray): The bounding boxes, shape (4, ), in
                ``xyxy`` order.

        Returns:
            list[float]: The converted bounding boxes, in ``xywh`` order.
        """

        _bbox = bbox.tolist()
        return [
            _bbox[0],
            _bbox[1],
            _bbox[2] - _bbox[0],
            _bbox[3] - _bbox[1],
        ] 
开发者ID:open-mmlab,项目名称:mmdetection,代码行数:21,代码来源:coco.py

示例11: to_tensor

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ndarray [as 别名]
def to_tensor(data):
    """Convert objects of various python types to :obj:`torch.Tensor`.

    Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`,
    :class:`Sequence`, :class:`int` and :class:`float`.

    Args:
        data (torch.Tensor | numpy.ndarray | Sequence | int | float): Data to
            be converted.
    """

    if isinstance(data, torch.Tensor):
        return data
    elif isinstance(data, np.ndarray):
        return torch.from_numpy(data)
    elif isinstance(data, Sequence) and not mmcv.is_str(data):
        return torch.tensor(data)
    elif isinstance(data, int):
        return torch.LongTensor([data])
    elif isinstance(data, float):
        return torch.FloatTensor([data])
    else:
        raise TypeError(f'type {type(data)} cannot be converted to tensor.') 
开发者ID:open-mmlab,项目名称:mmdetection,代码行数:25,代码来源:formating.py

示例12: plot_iou_recall

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ndarray [as 别名]
def plot_iou_recall(recalls, iou_thrs):
    """Plot IoU-Recalls curve.

    Args:
        recalls(ndarray or list): shape (k,)
        iou_thrs(ndarray or list): same shape as `recalls`
    """
    if isinstance(iou_thrs, np.ndarray):
        _iou_thrs = iou_thrs.tolist()
    else:
        _iou_thrs = iou_thrs
    if isinstance(recalls, np.ndarray):
        _recalls = recalls.tolist()
    else:
        _recalls = recalls

    import matplotlib.pyplot as plt
    f = plt.figure()
    plt.plot(_iou_thrs + [1.0], _recalls + [0.])
    plt.xlabel('IoU')
    plt.ylabel('Recall')
    plt.axis([iou_thrs.min(), 1, 0, 1])
    f.show() 
开发者ID:open-mmlab,项目名称:mmdetection,代码行数:25,代码来源:recall.py

示例13: tensor2imgs

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ndarray [as 别名]
def tensor2imgs(tensor, mean=(0, 0, 0), std=(1, 1, 1), to_rgb=True):
    """Convert tensor to images.

    Args:
        tensor (torch.Tensor): Tensor that contains multiple images
        mean (tuple[float], optional): Mean of images. Defaults to (0, 0, 0).
        std (tuple[float], optional): Standard deviation of images.
            Defaults to (1, 1, 1).
        to_rgb (bool, optional): Whether convert the images to RGB format.
            Defaults to True.

    Returns:
        list[np.ndarray]: A list that contains multiple images.
    """
    num_imgs = tensor.size(0)
    mean = np.array(mean, dtype=np.float32)
    std = np.array(std, dtype=np.float32)
    imgs = []
    for img_id in range(num_imgs):
        img = tensor[img_id, ...].cpu().numpy().transpose(1, 2, 0)
        img = mmcv.imdenormalize(
            img, mean, std, to_bgr=to_rgb).astype(np.uint8)
        imgs.append(np.ascontiguousarray(img))
    return imgs 
开发者ID:open-mmlab,项目名称:mmdetection,代码行数:26,代码来源:misc.py

示例14: crop_and_resize

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ndarray [as 别名]
def crop_and_resize(self,
                        bboxes,
                        out_shape,
                        inds,
                        device,
                        interpolation='bilinear'):
        """Crop and resize masks by the given bboxes.

        This function is mainly used in mask targets computation.
        It firstly align mask to bboxes by assigned_inds, then crop mask by the
        assigned bbox and resize to the size of (mask_h, mask_w)

        Args:
            bboxes (Tensor): Bboxes in format [x1, y1, x2, y2], shape (N, 4)
            out_shape (tuple[int]): Target (h, w) of resized mask
            inds (ndarray): Indexes to assign masks to each bbox
            device (str): Device of bboxes
            interpolation (str): See `mmcv.imresize`

        Return:
            BaseInstanceMasks: the cropped and resized masks.
        """
        pass 
开发者ID:open-mmlab,项目名称:mmdetection,代码行数:25,代码来源:structures.py

示例15: crop

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ndarray [as 别名]
def crop(self, bbox):
        """See :func:`BaseInstanceMasks.crop`."""
        assert isinstance(bbox, np.ndarray)
        assert bbox.ndim == 1

        # clip the boundary
        bbox = bbox.copy()
        bbox[0::2] = np.clip(bbox[0::2], 0, self.width)
        bbox[1::2] = np.clip(bbox[1::2], 0, self.height)
        x1, y1, x2, y2 = bbox
        w = np.maximum(x2 - x1, 1)
        h = np.maximum(y2 - y1, 1)

        if len(self.masks) == 0:
            cropped_masks = np.empty((0, h, w), dtype=np.uint8)
        else:
            cropped_masks = self.masks[:, y1:y1 + h, x1:x1 + w]
        return BitmapMasks(cropped_masks, h, w) 
开发者ID:open-mmlab,项目名称:mmdetection,代码行数:20,代码来源:structures.py


注:本文中的numpy.ndarray方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。