当前位置: 首页>>代码示例>>Python>>正文


Python numpy.ndarrary方法代码示例

本文整理汇总了Python中numpy.ndarrary方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.ndarrary方法的具体用法?Python numpy.ndarrary怎么用?Python numpy.ndarrary使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy的用法示例。


在下文中一共展示了numpy.ndarrary方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: run_kmeans

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ndarrary [as 别名]
def run_kmeans(features, n_cluster):
    """
    Run kmeans on a set of features to find <n_cluster> cluster.

    Args:
        features:  np.ndarrary [n_samples x embed_dim], embedding training/testing samples for which kmeans should be performed.
        n_cluster: int, number of cluster.
    Returns:
        cluster_assignments: np.ndarray [n_samples x 1], per sample provide the respective cluster label it belongs to.
    """
    n_samples, dim = features.shape
    kmeans = faiss.Kmeans(dim, n_cluster)
    kmeans.n_iter, kmeans.min_points_per_centroid, kmeans.max_points_per_centroid = 20,5,1000000000
    kmeans.train(features)
    _, cluster_assignments = kmeans.index.search(features,1)
    return cluster_assignments 
开发者ID:Confusezius,项目名称:Deep-Metric-Learning-Baselines,代码行数:18,代码来源:auxiliaries.py

示例2: discount_cumsum

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import ndarrary [as 别名]
def discount_cumsum(x, discount):
    """Discounted cumulative sum.

    See https://docs.scipy.org/doc/scipy/reference/tutorial/signal.html#difference-equation-filtering  # noqa: E501
    Here, we have y[t] - discount*y[t+1] = x[t]
    or rev(y)[t] - discount*rev(y)[t-1] = rev(x)[t]

    Args:
        x (np.ndarrary): Input.
        discount (float): Discount factor.

    Returns:
        np.ndarrary: Discounted cumulative sum.

    """
    return scipy.signal.lfilter([1], [1, float(-discount)], x[::-1],
                                axis=0)[::-1] 
开发者ID:rlworkgroup,项目名称:garage,代码行数:19,代码来源:tensor_utils.py


注:本文中的numpy.ndarrary方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。