当前位置: 首页>>代码示例>>Python>>正文


Python numpy.nanpercentile方法代码示例

本文整理汇总了Python中numpy.nanpercentile方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.nanpercentile方法的具体用法?Python numpy.nanpercentile怎么用?Python numpy.nanpercentile使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy的用法示例。


在下文中一共展示了numpy.nanpercentile方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _nanquantile_ureduce_func

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nanpercentile [as 别名]
def _nanquantile_ureduce_func(a, q, axis=None, out=None, overwrite_input=False,
                              interpolation='linear'):
    """
    Private function that doesn't support extended axis or keepdims.
    These methods are extended to this function using _ureduce
    See nanpercentile for parameter usage
    """
    if axis is None or a.ndim == 1:
        part = a.ravel()
        result = _nanquantile_1d(part, q, overwrite_input, interpolation)
    else:
        result = np.apply_along_axis(_nanquantile_1d, axis, a, q,
                                     overwrite_input, interpolation)
        # apply_along_axis fills in collapsed axis with results.
        # Move that axis to the beginning to match percentile's
        # convention.
        if q.ndim != 0:
            result = np.moveaxis(result, axis, 0)

    if out is not None:
        out[...] = result
    return result 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:24,代码来源:nanfunctions.py

示例2: test_out

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nanpercentile [as 别名]
def test_out(self):
        mat = np.random.rand(3, 3)
        nan_mat = np.insert(mat, [0, 2], np.nan, axis=1)
        resout = np.zeros(3)
        tgt = np.percentile(mat, 42, axis=1)
        res = np.nanpercentile(nan_mat, 42, axis=1, out=resout)
        assert_almost_equal(res, resout)
        assert_almost_equal(res, tgt)
        # 0-d output:
        resout = np.zeros(())
        tgt = np.percentile(mat, 42, axis=None)
        res = np.nanpercentile(nan_mat, 42, axis=None, out=resout)
        assert_almost_equal(res, resout)
        assert_almost_equal(res, tgt)
        res = np.nanpercentile(nan_mat, 42, axis=(0, 1), out=resout)
        assert_almost_equal(res, resout)
        assert_almost_equal(res, tgt) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:19,代码来源:test_nanfunctions.py

示例3: test_allnans

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nanpercentile [as 别名]
def test_allnans(self):
        mat = np.array([np.nan]*9).reshape(3, 3)
        for axis in [None, 0, 1]:
            with warnings.catch_warnings(record=True) as w:
                warnings.simplefilter('always')
                assert_(np.isnan(np.nanpercentile(mat, 60, axis=axis)).all())
                if axis is None:
                    assert_(len(w) == 1)
                else:
                    assert_(len(w) == 3)
                assert_(issubclass(w[0].category, RuntimeWarning))
                # Check scalar
                assert_(np.isnan(np.nanpercentile(np.nan, 60)))
                if axis is None:
                    assert_(len(w) == 2)
                else:
                    assert_(len(w) == 4)
                assert_(issubclass(w[0].category, RuntimeWarning)) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:20,代码来源:test_nanfunctions.py

示例4: test_multiple_percentiles

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nanpercentile [as 别名]
def test_multiple_percentiles(self):
        perc = [50, 100]
        mat = np.ones((4, 3))
        nan_mat = np.nan * mat
        # For checking consistency in higher dimensional case
        large_mat = np.ones((3, 4, 5))
        large_mat[:, 0:2:4, :] = 0
        large_mat[:, :, 3:] *= 2
        for axis in [None, 0, 1]:
            for keepdim in [False, True]:
                with suppress_warnings() as sup:
                    sup.filter(RuntimeWarning, "All-NaN slice encountered")
                    val = np.percentile(mat, perc, axis=axis, keepdims=keepdim)
                    nan_val = np.nanpercentile(nan_mat, perc, axis=axis,
                                               keepdims=keepdim)
                    assert_equal(nan_val.shape, val.shape)

                    val = np.percentile(large_mat, perc, axis=axis,
                                        keepdims=keepdim)
                    nan_val = np.nanpercentile(large_mat, perc, axis=axis,
                                               keepdims=keepdim)
                    assert_equal(nan_val, val)

        megamat = np.ones((3, 4, 5, 6))
        assert_equal(np.nanpercentile(megamat, perc, axis=(1, 2)).shape, (2, 3, 6)) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:27,代码来源:test_nanfunctions.py

示例5: _get_likelihood_values_for

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nanpercentile [as 别名]
def _get_likelihood_values_for(self, gmpe, imt):
        """
        Returns the likelihood values for Total, plus inter- and intra-event
        residuals according to Equation 9 of Scherbaum et al (2004) for the
        given gmpe and the given intensity measure type.
        `gmpe` must be in this object gmpe(s) list and imt must be defined
        for the given gmpe: this two conditions are not checked for here.

        :return: a dict mapping the residual type(s) (string) to the tuple
        lh, median_lh where the first is the array of likelihood values and
        the latter is the median of those values
        """

        ret = {}
        for res_type in self.types[gmpe][imt]:
            zvals = np.fabs(self.residuals[gmpe][imt][res_type])
            l_h = 1.0 - erf(zvals / sqrt(2.))
            median_lh = np.nanpercentile(l_h, 50.0)
            ret[res_type] = l_h, median_lh
        return ret 
开发者ID:GEMScienceTools,项目名称:gmpe-smtk,代码行数:22,代码来源:gmpe_residuals.py

示例6: _nanpercentile

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nanpercentile [as 别名]
def _nanpercentile(a, q, axis=None, out=None, overwrite_input=False,
                   interpolation='linear'):
    """
    Private function that doesn't support extended axis or keepdims.
    These methods are extended to this function using _ureduce
    See nanpercentile for parameter usage

    """
    if axis is None or a.ndim == 1:
        part = a.ravel()
        result = _nanpercentile1d(part, q, overwrite_input, interpolation)
    else:
        result = np.apply_along_axis(_nanpercentile1d, axis, a, q,
                                     overwrite_input, interpolation)
        # apply_along_axis fills in collapsed axis with results.
        # Move that axis to the beginning to match percentile's
        # convention.
        if q.ndim != 0:
            result = np.rollaxis(result, axis)

    if out is not None:
        out[...] = result
    return result 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:25,代码来源:nanfunctions.py

示例7: _nanpercentile

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nanpercentile [as 别名]
def _nanpercentile(a, q, axis=None, out=None, overwrite_input=False,
                   interpolation='linear'):
    """
    Private function that doesn't support extended axis or keepdims.
    These methods are extended to this function using _ureduce
    See nanpercentile for parameter usage

    """
    if axis is None:
        part = a.ravel()
        result = _nanpercentile1d(part, q, overwrite_input, interpolation)
    else:
        result = np.apply_along_axis(_nanpercentile1d, axis, a, q,
                                     overwrite_input, interpolation)
        # apply_along_axis fills in collapsed axis with results.
        # Move that axis to the beginning to match percentile's
        # convention.
        if q.ndim != 0:
            result = np.rollaxis(result, axis)

    if out is not None:
        out[...] = result
    return result 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:25,代码来源:nanfunctions.py

示例8: test_multiple_percentiles

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nanpercentile [as 别名]
def test_multiple_percentiles(self):
        perc = [50, 100]
        mat = np.ones((4, 3))
        nan_mat = np.nan * mat
        # For checking consistency in higher dimensional case
        large_mat = np.ones((3, 4, 5))
        large_mat[:, 0:2:4, :] = 0
        large_mat[:, :, 3:] *= 2
        for axis in [None, 0, 1]:
            for keepdim in [False, True]:
                with warnings.catch_warnings(record=True) as w:
                    warnings.simplefilter('always')
                    val = np.percentile(mat, perc, axis=axis, keepdims=keepdim)
                    nan_val = np.nanpercentile(nan_mat, perc, axis=axis,
                                               keepdims=keepdim)
                    assert_equal(nan_val.shape, val.shape)

                    val = np.percentile(large_mat, perc, axis=axis,
                                        keepdims=keepdim)
                    nan_val = np.nanpercentile(large_mat, perc, axis=axis,
                                               keepdims=keepdim)
                    assert_equal(nan_val, val)

        megamat = np.ones((3, 4, 5, 6))
        assert_equal(np.nanpercentile(megamat, perc, axis=(1, 2)).shape, (2, 3, 6)) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:27,代码来源:test_nanfunctions.py

示例9: _nanpercentile

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nanpercentile [as 别名]
def _nanpercentile(a, q, axis=None, out=None, overwrite_input=False,
                   interpolation='linear'):
    """
    Private function that doesn't support extended axis or keepdims.
    These methods are extended to this function using _ureduce
    See nanpercentile for parameter usage

    """
    if axis is None or a.ndim == 1:
        part = a.ravel()
        result = _nanpercentile1d(part, q, overwrite_input, interpolation)
    else:
        result = np.apply_along_axis(_nanpercentile1d, axis, a, q,
                                     overwrite_input, interpolation)
        # apply_along_axis fills in collapsed axis with results.
        # Move that axis to the beginning to match percentile's
        # convention.
        if q.ndim != 0:
            result = np.moveaxis(result, axis, 0)

    if out is not None:
        out[...] = result
    return result 
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:25,代码来源:nanfunctions.py

示例10: _dense_fit

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nanpercentile [as 别名]
def _dense_fit(self, X, random_state):
        """Compute percentiles for dense matrices.

        Parameters
        ----------
        X : ndarray, shape (n_samples, n_features)
            The data used to scale along the features axis.
        """
        if self.ignore_implicit_zeros:
            warnings.warn("'ignore_implicit_zeros' takes effect only with"
                          " sparse matrix. This parameter has no effect.")

        n_samples, n_features = X.shape
        references = self.references_ * 100

        self.quantiles_ = []
        for col in X.T:
            if self.subsample < n_samples:
                subsample_idx = random_state.choice(n_samples,
                                                    size=self.subsample,
                                                    replace=False)
                col = col.take(subsample_idx, mode='clip')
            self.quantiles_.append(np.nanpercentile(col, references))
        self.quantiles_ = np.transpose(self.quantiles_) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:26,代码来源:data.py

示例11: _gen_percentile

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nanpercentile [as 别名]
def _gen_percentile(self):
        self.pep = [
            round(i, 3) for i in np.nanpercentile(self.df.pe, np.arange(0, 110, 10))
        ]
        try:
            self.pbp = [
                round(i, 3) for i in np.nanpercentile(self.df.pb, np.arange(0, 110, 10))
            ]
        except TypeError:
            df = self.df.fillna(1)
            self.pbp = [
                round(i, 3) for i in np.nanpercentile(df.pb, np.arange(0, 110, 10))
            ] 
开发者ID:refraction-ray,项目名称:xalpha,代码行数:15,代码来源:toolbox.py

示例12: shift_mask_data

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nanpercentile [as 别名]
def shift_mask_data(X, Y, upper_percentile=70, lower_percentile=30, n_fwd_days=1):
    # Shift X to match factors at t to returns at t+n_fwd_days (we want to predict future returns after all)
    shifted_X = np.roll(X, n_fwd_days+1, axis=0)
    
    # Slice off rolled elements
    X = shifted_X[n_fwd_days+1:]
    Y = Y[n_fwd_days+1:]
    
    n_time, n_stocks, n_factors = X.shape
    
    # Look for biggest up and down movers
    upper = np.nanpercentile(Y, upper_percentile, axis=1)[:, np.newaxis]
    lower = np.nanpercentile(Y, lower_percentile, axis=1)[:, np.newaxis]
  
    upper_mask = (Y >= upper)
    lower_mask = (Y <= lower)
    
    mask = upper_mask | lower_mask # This also drops nans
    mask = mask.flatten()
    
    # Only try to predict whether a stock moved up/down relative to other stocks
    Y_binary = np.zeros(n_time * n_stocks)
    Y_binary[upper_mask.flatten()] = 1
    Y_binary[lower_mask.flatten()] = -1
    
    # Flatten X
    X = X.reshape((n_time * n_stocks, n_factors))

    # Drop stocks that did not move much (i.e. are in the 30th to 70th percentile)
    X = X[mask]
    Y_binary = Y_binary[mask]
    
    return X, Y_binary
    

# Massage data to be in the form expected by shift_mask_data() 
开发者ID:vsmolyakov,项目名称:fin,代码行数:38,代码来源:alpha_selection.py


注:本文中的numpy.nanpercentile方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。