本文整理汇总了Python中numpy.nanmax方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.nanmax方法的具体用法?Python numpy.nanmax怎么用?Python numpy.nanmax使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy
的用法示例。
在下文中一共展示了numpy.nanmax方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: apply_cmap
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nanmax [as 别名]
def apply_cmap(zs, cmap, vmin=None, vmax=None, unit=None, logrescale=False):
'''
apply_cmap(z, cmap) applies the given cmap to the values in z; if vmin and/or vmax are passed,
they are used to scale z.
Note that this function can automatically rescale data into log-space if the colormap is a
neuropythy log-space colormap such as log_eccentricity. To enable this behaviour use the
optional argument logrescale=True.
'''
zs = pimms.mag(zs) if unit is None else pimms.mag(zs, unit)
zs = np.asarray(zs, dtype='float')
if pimms.is_str(cmap): cmap = matplotlib.cm.get_cmap(cmap)
if logrescale:
if vmin is None: vmin = np.log(np.nanmin(zs))
if vmax is None: vmax = np.log(np.nanmax(zs))
mn = np.exp(vmin)
u = zdivide(nanlog(zs + mn) - vmin, vmax - vmin, null=np.nan)
else:
if vmin is None: vmin = np.nanmin(zs)
if vmax is None: vmax = np.nanmax(zs)
u = zdivide(zs - vmin, vmax - vmin, null=np.nan)
u[np.isnan(u)] = -np.inf
return cmap(u)
示例2: __call__
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nanmax [as 别名]
def __call__(self, transform_xy, x1, y1, x2, y2):
x_, y_ = np.linspace(x1, x2, self.nx), np.linspace(y1, y2, self.ny)
x, y = np.meshgrid(x_, y_)
lon, lat = transform_xy(np.ravel(x), np.ravel(y))
with np.errstate(invalid='ignore'):
if self.lon_cycle is not None:
lon0 = np.nanmin(lon)
# Changed from 180 to 360 to be able to span only
# 90-270 (left hand side)
lon -= 360. * ((lon - lon0) > 360.)
if self.lat_cycle is not None:
lat0 = np.nanmin(lat)
# Changed from 180 to 360 to be able to span only
# 90-270 (left hand side)
lat -= 360. * ((lat - lat0) > 360.)
lon_min, lon_max = np.nanmin(lon), np.nanmax(lon)
lat_min, lat_max = np.nanmin(lat), np.nanmax(lat)
lon_min, lon_max, lat_min, lat_max = \
self._adjust_extremes(lon_min, lon_max, lat_min, lat_max)
return lon_min, lon_max, lat_min, lat_max
示例3: test_calc_f107a_daily_missing
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nanmax [as 别名]
def test_calc_f107a_daily_missing(self):
""" Test the calc_f107a routine with some daily data missing"""
self.testInst.data = pds.DataFrame({'f107': np.linspace(70, 200, 160)},
index=[pysat.datetime(2009, 1, 1)
+ pds.DateOffset(days=2*i+1)
for i in range(160)])
sw_f107.calc_f107a(self.testInst, f107_name='f107', f107a_name='f107a')
# Assert that new data and metadata exist
assert 'f107a' in self.testInst.data.columns
assert 'f107a' in self.testInst.meta.keys()
# Assert the finite values have realistic means
assert(np.nanmin(self.testInst['f107a'])
> np.nanmin(self.testInst['f107']))
assert(np.nanmax(self.testInst['f107a'])
< np.nanmax(self.testInst['f107']))
# Assert the expected number of fill values
assert(len(self.testInst['f107a'][np.isnan(self.testInst['f107a'])])
== 40)
示例4: test_unsorted_index_lims
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nanmax [as 别名]
def test_unsorted_index_lims(self):
df = DataFrame({'y': [0., 1., 2., 3.]}, index=[1., 0., 3., 2.])
ax = df.plot()
xmin, xmax = ax.get_xlim()
lines = ax.get_lines()
assert xmin <= np.nanmin(lines[0].get_data()[0])
assert xmax >= np.nanmax(lines[0].get_data()[0])
df = DataFrame({'y': [0., 1., np.nan, 3., 4., 5., 6.]},
index=[1., 0., 3., 2., np.nan, 3., 2.])
ax = df.plot()
xmin, xmax = ax.get_xlim()
lines = ax.get_lines()
assert xmin <= np.nanmin(lines[0].get_data()[0])
assert xmax >= np.nanmax(lines[0].get_data()[0])
df = DataFrame({'y': [0., 1., 2., 3.], 'z': [91., 90., 93., 92.]})
ax = df.plot(x='z', y='y')
xmin, xmax = ax.get_xlim()
lines = ax.get_lines()
assert xmin <= np.nanmin(lines[0].get_data()[0])
assert xmax >= np.nanmax(lines[0].get_data()[0])
示例5: convert_to_one_hot_matrix
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nanmax [as 别名]
def convert_to_one_hot_matrix(self, dense_matrix, value_set=None):
if value_set is None:
n = np.nanmax(dense_matrix) + 1
value_set = np.arange(n)
n_data = dense_matrix.shape[0]
n_points = dense_matrix.shape[1]
n_values = value_set.size
one_hot_matrix = np.zeros((n_data, n_points, n_values), dtype=bool)
for i in range(n_data):
for j in range(n_points):
# NOTE:
# Ignore negative values.
if dense_matrix[i,j] < 0: continue
k = np.where(value_set == dense_matrix[i,j])[0]
one_hot_matrix[i,j,k] = True
return one_hot_matrix
示例6: scatter_lims
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nanmax [as 别名]
def scatter_lims(vals1, vals2=None, buffer=.05):
if vals2 is not None:
vals = np.concatenate((vals1, vals2))
else:
vals = vals1
vmin = np.nanmin(vals)
vmax = np.nanmax(vals)
buf = .05 * (vmax - vmin)
if vmin == 0:
vmin -= buf / 2
else:
vmin -= buf
vmax += buf
return vmin, vmax
################################################################################
# __main__
################################################################################
示例7: plot_seqlogo
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nanmax [as 别名]
def plot_seqlogo(ax, seq_align, sat_score_ti, pseudo_pct=0.05):
""" Plot a sequence logo for the loss/gain scores.
Args:
ax (Axis): matplotlib axis to plot to.
seq_align (L array): Sequence nucleotides, with gaps.
sat_score_ti (L_sm array): Minimum mutation delta across satmut length.
pseudo_pct (float): % of the max to add as a pseudocount.
"""
sat_score_cp = sat_score_ti.copy()
satmut_len = len(sat_score_ti)
# add pseudocounts
sat_score_cp += pseudo_pct * np.nanmax(sat_score_cp)
# expand
sat_score_4l = expand_4l(sat_score_cp, seq_align)
plots.seqlogo(sat_score_4l, ax)
示例8: plot_heat
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nanmax [as 别名]
def plot_heat(ax, sat_delta_ti, min_limit):
""" Plot satmut deltas.
Args:
ax (Axis): matplotlib axis to plot to.
sat_delta_ti (4 x L_sm array): Single target delta matrix for saturated mutagenesis region,
min_limit (float): Minimum heatmap limit.
"""
vlim = max(min_limit, np.nanmax(np.abs(sat_delta_ti)))
sns.heatmap(
sat_delta_ti,
linewidths=0,
cmap='RdBu_r',
vmin=-vlim,
vmax=vlim,
xticklabels=False,
ax=ax)
ax.yaxis.set_ticklabels('ACGT', rotation='horizontal') # , size=10)
示例9: scatter_lims
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nanmax [as 别名]
def scatter_lims(vals1, vals2=None, buffer=.05):
if vals2 is not None:
vals = np.concatenate((vals1, vals2))
else:
vals = vals1
vmin = np.nanmin(vals)
vmax = np.nanmax(vals)
buf = .05 * (vmax - vmin)
if vmin == 0:
vmin -= buf / 2
else:
vmin -= buf
vmax += buf
return vmin, vmax
################################################################################
# nucleotides
# Thanks to Anshul Kundaje, Avanti Shrikumar
# https://github.com/kundajelab/deeplift/tree/master/deeplift/visualization
示例10: findmaxval_multirasters
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nanmax [as 别名]
def findmaxval_multirasters(FileList):
"""
Loops through a list or array of rasters (np arrays)
and finds the maximum single value in the set of arrays.
"""
overall_max_val = 0
for i in range (len(FileList)):
raster_as_array = LSDMap_IO.ReadRasterArrayBlocks(FileList[i])
this_max_val = np.nanmax(raster_as_array)
if this_max_val > overall_max_val:
overall_max_val = this_max_val
print(overall_max_val)
return overall_max_val
示例11: quickMinMax
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nanmax [as 别名]
def quickMinMax(self, data):
"""
Estimate the min/max values of *data* by subsampling.
Returns [(min, max), ...] with one item per channel
"""
while data.size > 1e6:
ax = np.argmax(data.shape)
sl = [slice(None)] * data.ndim
sl[ax] = slice(None, None, 2)
data = data[sl]
cax = self.axes['c']
if cax is None:
return [(float(nanmin(data)), float(nanmax(data)))]
else:
return [(float(nanmin(data.take(i, axis=cax))),
float(nanmax(data.take(i, axis=cax)))) for i in range(data.shape[-1])]
示例12: updateRealTimeLSandSS
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nanmax [as 别名]
def updateRealTimeLSandSS(self, sample):
"""
Updates the `Weighted Linear Sum` (WLS), the `Weighted Squared Sum` (WSS), the `center` and the `radius` of the micro-cluster when a new sample is merged.
:param sample: the `sample` to merge into the micro-cluster.
"""
sample = np.array(sample.value)
self.LS = np.multiply(self.LS, self.reductionFactor)
self.SS = np.multiply(self.SS, self.reductionFactor)
self.LS = self.LS + sample
self.SS = self.SS + np.power(sample, 2)
self.center = np.divide(self.LS, float(self.weight))
LSd = np.power(self.center, 2)
SSd = np.divide(self.SS, float(self.weight))
maxRad = np.nanmax(np.sqrt(SSd.astype(float)-LSd.astype(float)))
# maxRad = np.nanmax(np.lib.scimath.sqrt(SSd-LSd))
self.radius = maxRad
示例13: netcdf_to_geojson
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nanmax [as 别名]
def netcdf_to_geojson(ncfile, var, fourth_dim=None):
realpath = os.path.realpath(ncfile)
name, ext = os.path.splitext(realpath)
X, Y, Z, levels, unit = setup(ncfile, var)
figure = plt.figure()
ax = figure.add_subplot(111)
for t in range(len(Z.time)):
third = Z.isel(time=t)
position = 0
if len(third.dims) == 3:
position = len(getattr(third, third.dims[0]))-1
third = third[position, ]
# local min max
levels = np.linspace(start=np.nanmin(third),
stop=np.nanmax(third), num=20)
contourf = ax.contourf(X, Y, third, levels=levels, cmap=plt.cm.viridis)
geojsoncontour.contourf_to_geojson(
contourf=contourf,
geojson_filepath='{}_{}_t{}_{}.geojson'.format(name, var,
t, position),
ndigits=3,
min_angle_deg=None,
unit=unit
)
示例14: subfig_evo_rad_pow_sz
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nanmax [as 别名]
def subfig_evo_rad_pow_sz(ax_power_evo, out, legend, norm=1, **kwargs):
if out.nSlices > 1:
z = out.z
s = out.s
power = out.rad_power
if norm == 1:
max_power = np.nanmax(power, 1)[:, np.newaxis]
max_power[max_power == 0] = 1 # avoid division by zero
power = power / max_power
# power[isnan(power)]=0
ax_power_evo.pcolormesh(z, s * 1e6, power.T)
ax_power_evo.set_xlabel('z [m]')
ax_power_evo.set_ylabel('s [$\mu$m]')
ax_power_evo.axis('tight')
ax_power_evo.grid(True)
else:
pass
示例15: subfig_evo_rad_spec_sz
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nanmax [as 别名]
def subfig_evo_rad_spec_sz(ax_spectrum_evo, out, legend, norm=1):
if out.nSlices > 1:
z = out.z
l, spectrum = out.calc_spec()
# spectrum = out.spec
if norm == 1:
max_spectrum = np.nanmax(spectrum, 1)[:, np.newaxis]
max_spectrum[max_spectrum == 0] = 1 # avoid division by zero
spectrum = spectrum / max_spectrum
# spectrum[isnan(spectrum)]=0
ax_spectrum_evo.pcolormesh(z, l, spectrum.T)
ax_spectrum_evo.set_xlabel('z [m]')
ax_spectrum_evo.set_ylabel('[eV]')
ax_spectrum_evo.axis('tight')
ax_spectrum_evo.grid(True)
else:
pass