当前位置: 首页>>代码示例>>Python>>正文


Python numpy.nan_to_num方法代码示例

本文整理汇总了Python中numpy.nan_to_num方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.nan_to_num方法的具体用法?Python numpy.nan_to_num怎么用?Python numpy.nan_to_num使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy的用法示例。


在下文中一共展示了numpy.nan_to_num方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: observe

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nan_to_num [as 别名]
def observe(self) -> np.array:
        """Returns the rows to be observed by the agent."""
        rows = self.rows.copy()

        if len(rows) < self.window_size:
            size = self.window_size - len(rows)
            padding = np.zeros((size, rows.shape[1]))
            padding = pd.DataFrame(padding, columns=self.rows.columns)
            rows = pd.concat([padding, rows], ignore_index=True, sort=False)

        if isinstance(rows, pd.DataFrame):
            rows = rows.fillna(0, axis=1)
            rows = rows.values

        rows = np.nan_to_num(rows)

        return rows 
开发者ID:tensortrade-org,项目名称:tensortrade,代码行数:19,代码来源:observation_history.py

示例2: tfIdf

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nan_to_num [as 别名]
def tfIdf(dtm):
  nDoc = dtm.shape[0]
  nTerm = dtm.shape[1]
  dtmNorm = dtm/dtm.sum(axis=1, keepdims=True) # Normalize tf to unit weight, tf/line word count
  dtmNorm = np.nan_to_num(dtmNorm)
  tfIdfMat = np.zeros((nDoc,nTerm))
  
  for j in range(nTerm):
    tfVect = dtmNorm[:, j]
    nExist = np.sum(tfVect > 0.0) # if tfVect is 0.0, word is not in current doc
    idf = 0.0
    # int32
    if (nExist > 0):
      idf = np.log(nDoc/nExist)/np.log(2) # log2()
    else:
      idf = 0.0
    tfIdfMat[:,j] = tfVect * idf
  
  return tfIdfMat 
开发者ID:rockingdingo,项目名称:deepnlp,代码行数:21,代码来源:textrank.py

示例3: pagerank

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nan_to_num [as 别名]
def pagerank(nDim, adjMat, d, K):
    '''
    Args:
    d: damping factor, 
    K: iteration Number
    '''
    P = np.ones((nDim, 1)) * (1/nDim)
    
    # normalize adjacency Matrix
    B = adjMat/adjMat.sum(axis=1, keepdims=True)
    B = np.nan_to_num(B)
    
    U = np.ones((nDim, nDim)) * (1/nDim)
    
    M = d * B + (1-d) * U
    
    for i in range(K):
        P = np.dot(M.T, P)
    score = P.tolist()
    return P 
开发者ID:rockingdingo,项目名称:deepnlp,代码行数:22,代码来源:textrank.py

示例4: lf_overlaps

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nan_to_num [as 别名]
def lf_overlaps(L, normalize_by_coverage=False):
    """Return the **fraction of items each LF labels that are also labeled by at
     least one other LF.**

    Note that the maximum possible overlap fraction for an LF is the LF's
    coverage, unless `normalize_by_coverage=True`, in which case it is 1.

    Args:
        L: an n x m scipy.sparse matrix where L_{i,j} is the label given by the
            jth LF to the ith candidate
        normalize_by_coverage: Normalize by coverage of the LF, so that it
            returns the percent of LF labels that have overlaps.
    """
    overlaps = (L != 0).T @ _overlapped_data_points(L) / L.shape[0]
    if normalize_by_coverage:
        overlaps /= lf_coverages(L)
    return np.nan_to_num(overlaps) 
开发者ID:HazyResearch,项目名称:metal,代码行数:19,代码来源:analysis.py

示例5: lf_conflicts

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nan_to_num [as 别名]
def lf_conflicts(L, normalize_by_overlaps=False):
    """Return the **fraction of items each LF labels that are also given a
    different (non-abstain) label by at least one other LF.**

    Note that the maximum possible conflict fraction for an LF is the LF's
        overlaps fraction, unless `normalize_by_overlaps=True`, in which case it
        is 1.

    Args:
        L: an n x m scipy.sparse matrix where L_{i,j} is the label given by the
            jth LF to the ith candidate
        normalize_by_overlaps: Normalize by overlaps of the LF, so that it
            returns the percent of LF overlaps that have conflicts.
    """
    conflicts = (L != 0).T @ _conflicted_data_points(L) / L.shape[0]
    if normalize_by_overlaps:
        conflicts /= lf_overlaps(L)
    return np.nan_to_num(conflicts) 
开发者ID:HazyResearch,项目名称:metal,代码行数:20,代码来源:analysis.py

示例6: __init__

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nan_to_num [as 别名]
def __init__(self, data, hpc_p, costs):
        self.data_x = data.iloc[:, 0:-1].astype('float32').values
        self.data_n = np.isnan(self.data_x)
        self.data_x = np.nan_to_num(self.data_x)

        self.data_y = data.iloc[:,   -1].astype('int32').values

        self.data_len = len(data)

        self.hpc_p = hpc_p.values
        self.costs = costs.values

        self.mask = np.zeros( (config.AGENTS, config.FEATURE_DIM), dtype=np.float32 )
        self.x    = np.zeros( (config.AGENTS, config.FEATURE_DIM), dtype=np.float32 )
        self.y    = np.zeros( config.AGENTS, dtype=np.int64 )
        self.p    = np.zeros( config.AGENTS, dtype=np.int32 )
        self.n    = np.zeros( (config.AGENTS, config.FEATURE_DIM), dtype=np.bool ) 
开发者ID:jaromiru,项目名称:cwcf,代码行数:19,代码来源:env.py

示例7: nan_dot

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nan_to_num [as 别名]
def nan_dot(A, B):
    """
    Returns np.dot(left_matrix, right_matrix) with the convention that
    nan * 0 = 0 and nan * x = nan if x != 0.

    Parameters
    ----------
    A, B : np.ndarrays
    """
    # Find out who should be nan due to nan * nonzero
    should_be_nan_1 = np.dot(np.isnan(A), (B != 0))
    should_be_nan_2 = np.dot((A != 0), np.isnan(B))
    should_be_nan = should_be_nan_1 + should_be_nan_2

    # Multiply after setting all nan to 0
    # This is what happens if there were no nan * nonzero conflicts
    C = np.dot(np.nan_to_num(A), np.nan_to_num(B))

    C[should_be_nan] = np.nan

    return C 
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:23,代码来源:tools.py

示例8: _average_precision

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nan_to_num [as 别名]
def _average_precision(self, rec, prec):
        """
        calculate average precision, override the default one,
        special 11-point metric

        Params:
        ----------
        rec : numpy.array
            cumulated recall
        prec : numpy.array
            cumulated precision
        Returns:
        ----------
        ap as float
        """
        if rec is None or prec is None:
            return np.nan
        ap = 0.
        for t in np.arange(0., 1.1, 0.1):
            if np.sum(rec >= t) == 0:
                p = 0
            else:
                p = np.max(np.nan_to_num(prec)[rec >= t])
            ap += p / 11.
        return ap 
开发者ID:dmlc,项目名称:gluon-cv,代码行数:27,代码来源:voc_detection.py

示例9: Transform

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nan_to_num [as 别名]
def Transform(self, data_container, store_folder='', store_key=''):
        if data_container.IsEmpty():
            return data_container

        new_data_container = deepcopy(data_container)
        array = new_data_container.GetArray()
        array -= self._interception
        array /= self._slop
        array = np.nan_to_num(array)

        new_data_container.SetArray(array)
        new_data_container.UpdateFrameByData()

        if store_folder:
            assert(len(store_key) > 0)
            self.SaveNormalDataContainer(data_container, store_folder, store_key)

        return new_data_container 
开发者ID:salan668,项目名称:FAE,代码行数:20,代码来源:Normalizer.py

示例10: macro_accuracy

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nan_to_num [as 别名]
def macro_accuracy(P, Y, n_classes, bg_class=None, return_all=False, **kwargs):
    def macro_(P, Y, n_classes=None, bg_class=None, return_all=False):
        conf_matrix = sm.confusion_matrix(Y, P, labels=np.arange(n_classes))
        conf_matrix = conf_matrix / (conf_matrix.sum(0)[:, None] + 1e-5)
        conf_matrix = np.nan_to_num(conf_matrix)
        diag = conf_matrix.diagonal() * 100.

        # Remove background score
        if bg_class is not None:
            diag = np.array([diag[i] for i in range(n_classes) if i != bg_class])

        macro = diag.mean()
        if return_all:
            return macro, diag
        else:
            return macro

    if type(P) == list:
        out = [macro_(P[i], Y[i], n_classes=n_classes, bg_class=bg_class, return_all=return_all) for i in range(len(P))]
        if return_all:
            return (np.mean([o[0] for o in out]), np.mean([o[1] for o in out], 0))
        else:
            return np.mean(out)
    else:
        return macro_(P, Y, n_classes=n_classes, bg_class=bg_class, return_all=return_all) 
开发者ID:Zephyr-D,项目名称:TCFPN-ISBA,代码行数:27,代码来源:metrics.py

示例11: rotate_around_axis

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nan_to_num [as 别名]
def rotate_around_axis(coords, Q, origin='empty'):
    '''Uses standard quaternion to rotate a vector. Q requires
    a 4-dimensional vector. coords is the 3d location of the point.
    coords can also be an N x 3 array of vectors. Happens to work
    with Q as a tuple or a np array shape 4'''
    if origin == 'empty':    
        vcV = np.cross(Q[1:], coords)
        RV = np.nan_to_num(coords + vcV * (2*Q[0]) + np.cross(Q[1:],vcV)*2)
    else:
        coords -= origin
        vcV = np.cross(Q[1:],coords)
        RV = (np.nan_to_num(coords + vcV * (2*Q[0]) + np.cross(Q[1:],vcV)*2)) + origin       
        coords += origin #undo in-place offset
    return RV 
开发者ID:the3dadvantage,项目名称:Modeling-Cloth,代码行数:16,代码来源:SurfaceFollow.py

示例12: barycentric_generate

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nan_to_num [as 别名]
def barycentric_generate(hits, tris):
    '''Create scalars to be used by points and triangles'''
    # where the hit lands on the two tri vecs
    tv = tris[:, 1] - tris[:, 0]
    hv = hits - tris[:, 0]
    d1a = np.einsum('ij, ij->i', hv, tv)
    d1b = np.einsum('ij, ij->i', tv, tv)
    scalar1 = np.nan_to_num(d1a / d1b)

    t2v = tris[:, 2] - tris[:, 0]
    d2a = np.einsum('ij, ij->i', hv, t2v)
    d2b = np.einsum('ij, ij->i', t2v, t2v)
    scalar2 = np.nan_to_num(d2a / d2b)
    
    # closest point on edge segment between the two points created above
    cp1 = tv * np.expand_dims(scalar1, axis=1)
    cp2 = t2v * np.expand_dims(scalar2, axis=1)
    cpvec = cp2 - cp1
    cp1_at = tris[:,0] + cp1
    hcp = hits - cp1_at # this is cp3 above. Not sure what's it's for yet
    dhcp = np.einsum('ij, ij->i', hcp, cpvec)
    d3b = np.einsum('ij, ij->i', cpvec, cpvec)
    hcp_scalar = np.nan_to_num(dhcp / d3b)
    hcp_vec = cpvec * np.expand_dims(hcp_scalar, axis=1)    
    
    # base of tri on edge between first two points
    d3 = np.einsum('ij, ij->i', -cp1, cpvec)
    scalar3 = np.nan_to_num(d3 / d3b)
    base_cp_vec = cpvec * np.expand_dims(scalar3, axis=1)
    base_on_span = cp1_at + base_cp_vec

    # Where the point occurs on the edge between the base of the triangle
    #   and the cpoe of the base of the triangle on the cpvec    
    base_vec = base_on_span - tris[:,0]
    dba = np.einsum('ij, ij->i', hv, base_vec)
    dbb = np.einsum('ij, ij->i', base_vec, base_vec)
    scalar_final = np.nan_to_num(dba / dbb)
    p_on_bv = base_vec * np.expand_dims(scalar_final, axis=1)
    perp = (p_on_bv) - (cp1 + base_cp_vec)
    return scalar1, scalar2, hcp_scalar, scalar3, scalar_final 
开发者ID:the3dadvantage,项目名称:Modeling-Cloth,代码行数:42,代码来源:SurfaceFollow.py

示例13: project_points

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nan_to_num [as 别名]
def project_points(points, tri_coords):
    '''Using this to get the points off the surface
    Takes the average length of two vecs off triangles
    and applies it to the length of the normals.
    This way the normal scales with the mesh and with
    changes to the individual triangle vectors'''
    t0 = tri_coords[:, 0]
    t1 = tri_coords[:, 1]
    t2 = tri_coords[:, 2]
    tv1 = t1 - t0
    tv2 = t2 - t0
    cross = np.cross(tv1, tv2)
    
    # get the average length of the two vectors and apply it to the cross product
    sq = np.sqrt(np.einsum('ij,ij->i', cross, cross))
    x1 = np.einsum('ij,ij->i', tv1, tv1)
    x2 = np.einsum('ij,ij->i', tv2, tv2)
    av_root = np.sqrt((x1 + x2) / 2)
    cr_root = (cross / np.expand_dims(sq, axis=1)) * np.expand_dims(av_root, axis=1)    
     
    v1 = points - t0
    v1_dots = np.einsum('ij,ij->i', cr_root, v1)
    n_dots = np.einsum('ij,ij->i', cr_root, cr_root)
    scale = np.nan_to_num(v1_dots / n_dots)
    offset = cr_root * np.expand_dims(scale, axis=1)
    drop = points - offset # The drop is used by the barycentric generator as points in the triangles
    return drop, scale 
开发者ID:the3dadvantage,项目名称:Modeling-Cloth,代码行数:29,代码来源:SurfaceFollow.py

示例14: decayCoefObjectiveFn

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nan_to_num [as 别名]
def decayCoefObjectiveFn(x, Y, EX2):
	"""
	Computes the objective function for terms involving lambda in the M-step.
	Checked.
	Input:
	x: value of lambda
	Y: the matrix of observed values
	EX2: the matrix of values of EX2 estimated in the E-step.
	Returns:
	obj: value of objective function
	grad: gradient
	"""
	with warnings.catch_warnings():
		warnings.simplefilter("ignore")

		y_squared = Y ** 2
		Y_is_zero = np.abs(Y) < 1e-6
		exp_Y_squared = np.exp(-x * y_squared)
		log_exp_Y = np.nan_to_num(np.log(1 - exp_Y_squared))
		exp_ratio = np.nan_to_num(exp_Y_squared / (1 - exp_Y_squared))
		obj = sum(sum(Y_is_zero * (-EX2 * x) + (1 - Y_is_zero) * log_exp_Y))
		grad = sum(sum(Y_is_zero * (-EX2) + (1 - Y_is_zero) * y_squared * exp_ratio))

		if (type(obj) is not np.float64) or (type(grad) is not np.float64):
			raise Exception("Unexpected behavior in optimizing decay coefficient lambda. Please contact emmap1@cs.stanford.edu.")
		if type(obj) is np.float64:
			obj = -np.array([obj])
		if type(grad) is np.float64:
			grad = -np.array([grad])

		return obj, grad 
开发者ID:epierson9,项目名称:ZIFA,代码行数:33,代码来源:ZIFA.py

示例15: forward

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import nan_to_num [as 别名]
def forward(y_hat, y):
        y_hat = _cutoff(y_hat)
        y = _cutoff(y)
        return -np.mean(np.sum(np.nan_to_num(y * np.log(y_hat) + (1 - y) * np.log(1 - y_hat)), axis=1)) 
开发者ID:l11x0m7,项目名称:lightnn,代码行数:6,代码来源:losses.py


注:本文中的numpy.nan_to_num方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。