当前位置: 首页>>代码示例>>Python>>正文


Python numpy.max方法代码示例

本文整理汇总了Python中numpy.max方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.max方法的具体用法?Python numpy.max怎么用?Python numpy.max使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy的用法示例。


在下文中一共展示了numpy.max方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: to_radians

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import max [as 别名]
def to_radians(arr, is_delta=False):
    """Force data with units either degrees or radians to be radians."""
    # Infer the units from embedded metadata, if it's there.
    try:
        units = arr.units
    except AttributeError:
        pass
    else:
        if units.lower().startswith('degrees'):
            warn_msg = ("Conversion applied: degrees -> radians to array: "
                        "{}".format(arr))
            logging.debug(warn_msg)
            return np.deg2rad(arr)
    # Otherwise, assume degrees if the values are sufficiently large.
    threshold = 0.1*np.pi if is_delta else 4*np.pi
    if np.max(np.abs(arr)) > threshold:
        warn_msg = ("Conversion applied: degrees -> radians to array: "
                    "{}".format(arr))
        logging.debug(warn_msg)
        return np.deg2rad(arr)
    return arr 
开发者ID:spencerahill,项目名称:aospy,代码行数:23,代码来源:vertcoord.py

示例2: load_RSM

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import max [as 别名]
def load_RSM(filename):
    om, tt, psd = xu.io.getxrdml_map(filename)
    om = np.deg2rad(om)
    tt = np.deg2rad(tt)
    wavelength = 1.54056

    q_y = (1 / wavelength) * (np.cos(tt) - np.cos(2 * om - tt))
    q_x = (1 / wavelength) * (np.sin(tt) - np.sin(2 * om - tt))

    xi = np.linspace(np.min(q_x), np.max(q_x), 100)
    yi = np.linspace(np.min(q_y), np.max(q_y), 100)
    psd[psd < 1] = 1
    data_grid = griddata(
        (q_x, q_y), psd, (xi[None, :], yi[:, None]), fill_value=1, method="cubic"
    )
    nx, ny = data_grid.shape

    range_values = [np.min(q_x), np.max(q_x), np.min(q_y), np.max(q_y)]
    output_data = (
        Panel(np.log(data_grid).reshape(nx, ny, 1), minor_axis=["RSM"])
        .transpose(2, 0, 1)
        .to_frame()
    )

    return range_values, output_data 
开发者ID:materialsproject,项目名称:MPContribs,代码行数:27,代码来源:pre_submission.py

示例3: create_mnist

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import max [as 别名]
def create_mnist(tfrecord_dir, mnist_dir):
    print('Loading MNIST from "%s"' % mnist_dir)
    import gzip
    with gzip.open(os.path.join(mnist_dir, 'train-images-idx3-ubyte.gz'), 'rb') as file:
        images = np.frombuffer(file.read(), np.uint8, offset=16)
    with gzip.open(os.path.join(mnist_dir, 'train-labels-idx1-ubyte.gz'), 'rb') as file:
        labels = np.frombuffer(file.read(), np.uint8, offset=8)
    images = images.reshape(-1, 1, 28, 28)
    images = np.pad(images, [(0,0), (0,0), (2,2), (2,2)], 'constant', constant_values=0)
    assert images.shape == (60000, 1, 32, 32) and images.dtype == np.uint8
    assert labels.shape == (60000,) and labels.dtype == np.uint8
    assert np.min(images) == 0 and np.max(images) == 255
    assert np.min(labels) == 0 and np.max(labels) == 9
    onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32)
    onehot[np.arange(labels.size), labels] = 1.0
    
    with TFRecordExporter(tfrecord_dir, images.shape[0]) as tfr:
        order = tfr.choose_shuffled_order()
        for idx in range(order.size):
            tfr.add_image(images[order[idx]])
        tfr.add_labels(onehot[order])

#---------------------------------------------------------------------------- 
开发者ID:zalandoresearch,项目名称:disentangling_conditional_gans,代码行数:25,代码来源:dataset_tool.py

示例4: create_mnistrgb

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import max [as 别名]
def create_mnistrgb(tfrecord_dir, mnist_dir, num_images=1000000, random_seed=123):
    print('Loading MNIST from "%s"' % mnist_dir)
    import gzip
    with gzip.open(os.path.join(mnist_dir, 'train-images-idx3-ubyte.gz'), 'rb') as file:
        images = np.frombuffer(file.read(), np.uint8, offset=16)
    images = images.reshape(-1, 28, 28)
    images = np.pad(images, [(0,0), (2,2), (2,2)], 'constant', constant_values=0)
    assert images.shape == (60000, 32, 32) and images.dtype == np.uint8
    assert np.min(images) == 0 and np.max(images) == 255
    
    with TFRecordExporter(tfrecord_dir, num_images) as tfr:
        rnd = np.random.RandomState(random_seed)
        for idx in range(num_images):
            tfr.add_image(images[rnd.randint(images.shape[0], size=3)])

#---------------------------------------------------------------------------- 
开发者ID:zalandoresearch,项目名称:disentangling_conditional_gans,代码行数:18,代码来源:dataset_tool.py

示例5: create_cifar100

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import max [as 别名]
def create_cifar100(tfrecord_dir, cifar100_dir):
    print('Loading CIFAR-100 from "%s"' % cifar100_dir)
    import pickle
    with open(os.path.join(cifar100_dir, 'train'), 'rb') as file:
        data = pickle.load(file, encoding='latin1')
    images = data['data'].reshape(-1, 3, 32, 32)
    labels = np.array(data['fine_labels'])
    assert images.shape == (50000, 3, 32, 32) and images.dtype == np.uint8
    assert labels.shape == (50000,) and labels.dtype == np.int32
    assert np.min(images) == 0 and np.max(images) == 255
    assert np.min(labels) == 0 and np.max(labels) == 99
    onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32)
    onehot[np.arange(labels.size), labels] = 1.0

    with TFRecordExporter(tfrecord_dir, images.shape[0]) as tfr:
        order = tfr.choose_shuffled_order()
        for idx in range(order.size):
            tfr.add_image(images[order[idx]])
        tfr.add_labels(onehot[order])

#---------------------------------------------------------------------------- 
开发者ID:zalandoresearch,项目名称:disentangling_conditional_gans,代码行数:23,代码来源:dataset_tool.py

示例6: convert_image

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import max [as 别名]
def convert_image(self, filename):
        pic = img.imread(filename)
        # Set FFT size to be double the image size so that the edge of the spectrum stays clear
        # preventing some bandfilter artifacts
        self.NFFT = 2*pic.shape[1]

        # Repeat image lines until each one comes often enough to reach the desired line time
        ffts = (np.flipud(np.repeat(pic[:, :, 0], self.repetitions, axis=0) / 16.)**2.) / 256.

        # Embed image in center bins of the FFT
        fftall = np.zeros((ffts.shape[0], self.NFFT))
        startbin = int(self.NFFT/4)
        fftall[:, startbin:(startbin+pic.shape[1])] = ffts

        # Generate random phase vectors for the FFT bins, this is important to prevent high peaks in the output
        # The phases won't be visible in the spectrum
        phases = 2*np.pi*np.random.rand(*fftall.shape)
        rffts = fftall * np.exp(1j*phases)

        # Perform the FFT per image line, then concatenate them to form the final signal
        timedata = np.fft.ifft(np.fft.ifftshift(rffts, axes=1), axis=1) / np.sqrt(float(self.NFFT))
        linear = timedata.flatten()
        linear = linear / np.max(np.abs(linear))
        return linear 
开发者ID:polygon,项目名称:spectrum_painter,代码行数:26,代码来源:spectrum_painter.py

示例7: wave2input_image

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import max [as 别名]
def wave2input_image(wave, window, pos=0, pad=0):
    wave_image = np.hstack([wave[pos+i*sride:pos+(i+pad*2)*sride+dif].reshape(height+pad*2, sride) for i in range(256//sride)])[:,:254]
    wave_image *= window
    spectrum_image = np.fft.fft(wave_image, axis=1)
    input_image = np.abs(spectrum_image[:,:128].reshape(1, height+pad*2, 128), dtype=np.float32)

    np.clip(input_image, 1000, None, out=input_image)
    np.log(input_image, out=input_image)
    input_image += bias
    input_image /= scale

    if np.max(input_image) > 0.95:
        print('input image max bigger than 0.95', np.max(input_image))
    if np.min(input_image) < 0.05:
        print('input image min smaller than 0.05', np.min(input_image))

    return input_image 
开发者ID:pstuvwx,项目名称:Deep_VoiceChanger,代码行数:19,代码来源:dataset.py

示例8: forward

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import max [as 别名]
def forward(self, x):
        N, C, H, W = x.shape
        out_h = int(1 + (H - self.pool_h) / self.stride)
        out_w = int(1 + (W - self.pool_w) / self.stride)

        col = im2col(x, self.pool_h, self.pool_w, self.stride, self.pad)
        col = col.reshape(-1, self.pool_h * self.pool_w)

        arg_max = np.argmax(col, axis=1)
        out = np.max(col, axis=1)
        out = out.reshape(N, out_h, out_w, C).transpose(0, 3, 1, 2)

        self.x = x
        self.arg_max = arg_max

        return out 
开发者ID:wdxtub,项目名称:deep-learning-note,代码行数:18,代码来源:layers.py

示例9: extract_logmel

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import max [as 别名]
def extract_logmel(y, sr, size=3):
    """
    extract log mel spectrogram feature
    :param y: the input signal (audio time series)
    :param sr: sample rate of 'y'
    :param size: the length (seconds) of random crop from original audio, default as 3 seconds
    :return: log-mel spectrogram feature
    """
    # normalization
    y = y.astype(np.float32)
    normalization_factor = 1 / np.max(np.abs(y))
    y = y * normalization_factor

    # random crop
    start = random.randint(0, len(y) - size * sr)
    y = y[start: start + size * sr]

    # extract log mel spectrogram #####
    melspectrogram = librosa.feature.melspectrogram(y=y, sr=sr, n_fft=2048, hop_length=1024, n_mels=60)
    logmelspec = librosa.power_to_db(melspectrogram)

    return logmelspec 
开发者ID:JasonZhang156,项目名称:Sound-Recognition-Tutorial,代码行数:24,代码来源:feature_extraction.py

示例10: extract_mfcc

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import max [as 别名]
def extract_mfcc(y, sr, size=3):
    """
    extract MFCC feature
    :param y: np.ndarray [shape=(n,)], real-valued the input signal (audio time series)
    :param sr: sample rate of 'y'
    :param size: the length (seconds) of random crop from original audio, default as 3 seconds
    :return: MFCC feature
    """
    # normalization
    y = y.astype(np.float32)
    normalization_factor = 1 / np.max(np.abs(y))
    y = y * normalization_factor

    # random crop
    start = random.randint(0, len(y) - size * sr)
    y = y[start: start + size * sr]

    # extract log mel spectrogram #####
    melspectrogram = librosa.feature.melspectrogram(y=y, sr=sr, n_fft=2048, hop_length=1024)
    mfcc = librosa.feature.mfcc(S=librosa.power_to_db(melspectrogram), n_mfcc=20)
    mfcc_delta = librosa.feature.delta(mfcc)
    mfcc_delta_delta = librosa.feature.delta(mfcc_delta)
    mfcc_comb = np.concatenate([mfcc, mfcc_delta, mfcc_delta_delta], axis=0)

    return mfcc_comb 
开发者ID:JasonZhang156,项目名称:Sound-Recognition-Tutorial,代码行数:27,代码来源:feature_extraction.py

示例11: cortex_cmap_plot_2D

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import max [as 别名]
def cortex_cmap_plot_2D(the_map, zs, cmap, vmin=None, vmax=None, axes=None, triangulation=None):
    '''
    cortex_cmap_plot_2D(map, zs, cmap, axes) plots the given cortical map values zs on the given
      axes using the given given color map and yields the resulting polygon collection object.
    cortex_cmap_plot_2D(map, zs, cmap) uses matplotlib.pyplot.gca() for the axes.

    The following options may be passed:
      * triangulation (None) may specify the triangularion object for the mesh if it has already
        been created; otherwise it is generated fresh.
      * axes (None) specify the axes on which to plot; if None, then matplotlib.pyplot.gca() is
        used. If Ellipsis, then a tuple (triangulation, z, cmap) is returned; to recreate the plot,
        one would call:
          axes.tripcolor(triangulation, z, cmap, shading='gouraud', vmin=vmin, vmax=vmax)
      * vmin (default: None) specifies the minimum value for scaling the property when one is passed
        as the color option. None means to use the min value of the property.
      * vmax (default: None) specifies the maximum value for scaling the property when one is passed
        as the color option. None means to use the max value of the property.
    '''
    if triangulation is None:
        triangulation = matplotlib.tri.Triangulation(the_map.coordinates[0], the_map.coordinates[1],
                                                     triangles=the_map.tess.indexed_faces.T)
    if axes is Ellipsis: return (triangulation, zs, cmap)
    return axes.tripcolor(triangulation, zs, cmap=cmap, shading='gouraud', vmin=vmin, vmax=vmax) 
开发者ID:noahbenson,项目名称:neuropythy,代码行数:25,代码来源:core.py

示例12: db

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import max [as 别名]
def db(audio):
    if len(audio.shape) > 1:
        maxx = np.max(np.abs(audio), axis=1)
        return 20 * np.log10(maxx) if np.any(maxx != 0) else np.array([0])
    maxx = np.max(np.abs(audio))
    return 20 * np.log10(maxx) if maxx != 0 else np.array([0]) 
开发者ID:rtaori,项目名称:Black-Box-Audio,代码行数:8,代码来源:run_audio_attack.py

示例13: get_new_pop

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import max [as 别名]
def get_new_pop(elite_pop, elite_pop_scores, pop_size):
    scores_logits = np.exp(elite_pop_scores - elite_pop_scores.max()) 
    elite_pop_probs = scores_logits / scores_logits.sum()
    cand1 = elite_pop[np.random.choice(len(elite_pop), p=elite_pop_probs, size=pop_size)]
    cand2 = elite_pop[np.random.choice(len(elite_pop), p=elite_pop_probs, size=pop_size)]
    mask = np.random.rand(pop_size, elite_pop.shape[1]) < 0.5 
    next_pop = mask * cand1 + (1 - mask) * cand2
    return next_pop 
开发者ID:rtaori,项目名称:Black-Box-Audio,代码行数:10,代码来源:run_audio_attack.py

示例14: posterior

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import max [as 别名]
def posterior(self, psi):
        """
        Class-posterior estimation.

        Parameters
        ----------
        psi : array
            weighted data-classifier output (N samples by K classes)

        Returns
        -------
        pyx : array
            class-posterior estimation (N samples by K classes)

        """
        # Data shape
        N, K = psi.shape

        # Preallocate array
        pyx = np.zeros((N, K))

        # Subtract maximum value for numerical stability
        psi = (psi.T - np.max(psi, axis=1).T).T

        # Loop over classes
        for k in range(K):

            # Estimate posterior p^(Y=y | x_i)
            pyx[:, k] = np.exp(psi[:, k]) / np.sum(np.exp(psi), axis=1)

        return pyx 
开发者ID:wmkouw,项目名称:libTLDA,代码行数:33,代码来源:rba.py

示例15: predict

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import max [as 别名]
def predict(self, Z):
        """
        Make predictions on new dataset.

        Parameters
        ----------
        Z : array
            new data set (M samples by D features)

        Returns
        -------
        preds : array
            label predictions (M samples by 1)

        """
        # Data shape
        M, D = Z.shape

        # If classifier is trained, check for same dimensionality
        if self.is_trained:
            if not self.train_data_dim == D:
                raise ValueError('''Test data is of different dimensionality
                                 than training data.''')

        # Compute posteriors
        post = self.predict_proba(Z)

        # Predictions through max-posteriors
        preds = np.argmax(post, axis=1)

        # Map predictions back to original labels
        return self.classes[preds] 
开发者ID:wmkouw,项目名称:libTLDA,代码行数:34,代码来源:rba.py


注:本文中的numpy.max方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。