当前位置: 首页>>代码示例>>Python>>正文


Python ma.sqrt方法代码示例

本文整理汇总了Python中numpy.ma.sqrt方法的典型用法代码示例。如果您正苦于以下问题:Python ma.sqrt方法的具体用法?Python ma.sqrt怎么用?Python ma.sqrt使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy.ma的用法示例。


在下文中一共展示了ma.sqrt方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: pointbiserialr

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import sqrt [as 别名]
def pointbiserialr(x, y):
    x = ma.fix_invalid(x, copy=True).astype(bool)
    y = ma.fix_invalid(y, copy=True).astype(float)
    # Get rid of the missing data ..........
    m = ma.mask_or(ma.getmask(x), ma.getmask(y))
    if m is not nomask:
        unmask = np.logical_not(m)
        x = x[unmask]
        y = y[unmask]
    #
    n = len(x)
    # phat is the fraction of x values that are True
    phat = x.sum() / float(n)
    y0 = y[~x]  # y-values where x is False
    y1 = y[x]  # y-values where x is True
    y0m = y0.mean()
    y1m = y1.mean()
    #
    rpb = (y1m - y0m)*np.sqrt(phat * (1-phat)) / y.std()
    #
    df = n-2
    t = rpb*ma.sqrt(df/(1.0-rpb**2))
    prob = betai(0.5*df, 0.5, df/(df+t*t))
    return rpb, prob 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:26,代码来源:mstats_basic.py

示例2: skew

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import sqrt [as 别名]
def skew(a, axis=0, bias=True):
    a, axis = _chk_asarray(a,axis)
    n = a.count(axis)
    m2 = moment(a, 2, axis)
    m3 = moment(a, 3, axis)
    olderr = np.seterr(all='ignore')
    try:
        vals = ma.where(m2 == 0, 0, m3 / m2**1.5)
    finally:
        np.seterr(**olderr)

    if not bias:
        can_correct = (n > 2) & (m2 > 0)
        if can_correct.any():
            m2 = np.extract(can_correct, m2)
            m3 = np.extract(can_correct, m3)
            nval = ma.sqrt((n-1.0)*n)/(n-2.0)*m3/m2**1.5
            np.place(vals, can_correct, nval)
    return vals 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:21,代码来源:mstats_basic.py

示例3: kurtosistest

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import sqrt [as 别名]
def kurtosistest(a, axis=0):
    a, axis = _chk_asarray(a, axis)
    n = a.count(axis=axis).astype(float)
    if np.min(n) < 20:
        warnings.warn(
            "kurtosistest only valid for n>=20 ... continuing anyway, n=%i" %
            np.min(n))
    b2 = kurtosis(a, axis, fisher=False)
    E = 3.0*(n-1) / (n+1)
    varb2 = 24.0*n*(n-2)*(n-3) / ((n+1)*(n+1)*(n+3)*(n+5))
    x = (b2-E)/ma.sqrt(varb2)
    sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5)) /
                                                        (n*(n-2)*(n-3)))
    A = 6.0 + 8.0/sqrtbeta1 * (2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2)))
    term1 = 1 - 2./(9.0*A)
    denom = 1 + x*ma.sqrt(2/(A-4.0))
    denom[denom < 0] = masked
    term2 = ma.power((1-2.0/A)/denom,1/3.0)
    Z = (term1 - term2) / np.sqrt(2/(9.0*A))
    return Z, (1.0-stats.zprob(Z))*2 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:22,代码来源:mstats_basic.py

示例4: f_value_wilks_lambda

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import sqrt [as 别名]
def f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b):
    """Calculation of Wilks lambda F-statistic for multivariate data, per
    Maxwell & Delaney p.657.
    """
    ER = ma.array(ER, copy=False, ndmin=2)
    EF = ma.array(EF, copy=False, ndmin=2)
    if ma.getmask(ER).any() or ma.getmask(EF).any():
        raise NotImplementedError("Not implemented when the inputs "
                                  "have missing data")

    lmbda = np.linalg.det(EF) / np.linalg.det(ER)
    q = ma.sqrt(((a-1)**2*(b-1)**2 - 2) / ((a-1)**2 + (b-1)**2 - 5))
    q = ma.filled(q, 1)
    n_um = (1 - lmbda**(1.0/q))*(a-1)*(b-1)
    d_en = lmbda**(1.0/q) / (n_um*q - 0.5*(a-1)*(b-1) + 1)
    return n_um / d_en 
开发者ID:nccgroup,项目名称:Splunking-Crime,代码行数:18,代码来源:mstats_basic.py

示例5: stde_median

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import sqrt [as 别名]
def stde_median(data, axis=None):
    """Returns the McKean-Schrader estimate of the standard error of the sample
    median along the given axis. masked values are discarded.

    Parameters
    ----------
    data : ndarray
        Data to trim.
    axis : {None,int}, optional
        Axis along which to perform the trimming.
        If None, the input array is first flattened.

    """
    def _stdemed_1D(data):
        data = np.sort(data.compressed())
        n = len(data)
        z = 2.5758293035489004
        k = int(np.round((n+1)/2. - z * np.sqrt(n/4.),0))
        return ((data[n-k] - data[k-1])/(2.*z))

    data = ma.array(data, copy=False, subok=True)
    if (axis is None):
        return _stdemed_1D(data)
    else:
        if data.ndim > 2:
            raise ValueError("Array 'data' must be at most two dimensional, "
                             "but got data.ndim = %d" % data.ndim)
        return ma.apply_along_axis(_stdemed_1D, axis, data) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:30,代码来源:mstats_basic.py

示例6: compare_medians_ms

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import sqrt [as 别名]
def compare_medians_ms(group_1, group_2, axis=None):
    """
    Compares the medians from two independent groups along the given axis.

    The comparison is performed using the McKean-Schrader estimate of the
    standard error of the medians.

    Parameters
    ----------
    group_1 : array_like
        First dataset.  Has to be of size >=7.
    group_2 : array_like
        Second dataset.  Has to be of size >=7.
    axis : int, optional
        Axis along which the medians are estimated. If None, the arrays are
        flattened.  If `axis` is not None, then `group_1` and `group_2`
        should have the same shape.

    Returns
    -------
    compare_medians_ms : {float, ndarray}
        If `axis` is None, then returns a float, otherwise returns a 1-D
        ndarray of floats with a length equal to the length of `group_1`
        along `axis`.

    """
    (med_1, med_2) = (ma.median(group_1,axis=axis), ma.median(group_2,axis=axis))
    (std_1, std_2) = (mstats.stde_median(group_1, axis=axis),
                      mstats.stde_median(group_2, axis=axis))
    W = np.abs(med_1 - med_2) / ma.sqrt(std_1**2 + std_2**2)
    return 1 - norm.cdf(W) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:33,代码来源:mstats_extras.py

示例7: linregress

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import sqrt [as 别名]
def linregress(*args):
    if len(args) == 1:  # more than 1D array?
        args = ma.array(args[0], copy=True)
        if len(args) == 2:
            x = args[0]
            y = args[1]
        else:
            x = args[:,0]
            y = args[:,1]
    else:
        x = ma.array(args[0]).flatten()
        y = ma.array(args[1]).flatten()
    m = ma.mask_or(ma.getmask(x), ma.getmask(y))
    if m is not nomask:
        x = ma.array(x,mask=m)
        y = ma.array(y,mask=m)
    n = len(x)
    (xmean, ymean) = (x.mean(), y.mean())
    (xm, ym) = (x-xmean, y-ymean)
    (Sxx, Syy) = (ma.add.reduce(xm*xm), ma.add.reduce(ym*ym))
    Sxy = ma.add.reduce(xm*ym)
    r_den = ma.sqrt(Sxx*Syy)
    if r_den == 0.0:
        r = 0.0
    else:
        r = Sxy / r_den
        if (r > 1.0):
            r = 1.0  # from numerical error
    # z = 0.5*log((1.0+r+TINY)/(1.0-r+TINY))
    df = n-2
    t = r * ma.sqrt(df/(1.0-r*r))
    prob = betai(0.5*df,0.5,df/(df+t*t))
    slope = Sxy / Sxx
    intercept = ymean - slope*xmean
    sterrest = ma.sqrt(1.-r*r) * y.std()
    return slope, intercept, r, prob, sterrest 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:38,代码来源:mstats_basic.py

示例8: ttest_onesamp

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import sqrt [as 别名]
def ttest_onesamp(a, popmean):
    a = ma.asarray(a)
    x = a.mean(axis=None)
    v = a.var(axis=None,ddof=1)
    n = a.count(axis=None)
    df = n-1
    svar = ((n-1)*v) / float(df)
    t = (x-popmean)/ma.sqrt(svar*(1.0/n))
    prob = betai(0.5*df,0.5,df/(df+t*t))
    return t,prob 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:12,代码来源:mstats_basic.py

示例9: ttest_ind

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import sqrt [as 别名]
def ttest_ind(a, b, axis=0):
    a, b, axis = _chk2_asarray(a, b, axis)
    (x1, x2) = (a.mean(axis), b.mean(axis))
    (v1, v2) = (a.var(axis=axis, ddof=1), b.var(axis=axis, ddof=1))
    (n1, n2) = (a.count(axis), b.count(axis))
    df = n1+n2-2
    svar = ((n1-1)*v1+(n2-1)*v2) / float(df)
    svar == 0
    t = (x1-x2)/ma.sqrt(svar*(1.0/n1 + 1.0/n2))  # N-D COMPUTATION HERE!!!!!!
    t = ma.filled(t, 1)           # replace NaN t-values with 1.0
    probs = betai(0.5*df,0.5,float(df)/(df+t*t)).reshape(t.shape)
    return t, probs.squeeze() 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:14,代码来源:mstats_basic.py

示例10: tsem

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import sqrt [as 别名]
def tsem(a, limits=None, inclusive=(True,True)):
    a = ma.asarray(a).ravel()
    if limits is None:
        n = float(a.count())
        return a.std()/ma.sqrt(n)
    am = trima(a.ravel(), limits, inclusive)
    sd = np.sqrt(am.var())
    return sd / am.count() 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:10,代码来源:mstats_basic.py

示例11: stde_median

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import sqrt [as 别名]
def stde_median(data, axis=None):
    """Returns the McKean-Schrader estimate of the standard error of the sample
median along the given axis. masked values are discarded.

    Parameters
    ----------
        data : ndarray
            Data to trim.
        axis : {None,int}, optional
            Axis along which to perform the trimming.
            If None, the input array is first flattened.

    """
    def _stdemed_1D(data):
        data = np.sort(data.compressed())
        n = len(data)
        z = 2.5758293035489004
        k = int(np.round((n+1)/2. - z * np.sqrt(n/4.),0))
        return ((data[n-k] - data[k-1])/(2.*z))
    #
    data = ma.array(data, copy=False, subok=True)
    if (axis is None):
        return _stdemed_1D(data)
    else:
        if data.ndim > 2:
            raise ValueError("Array 'data' must be at most two dimensional, but got data.ndim = %d" % data.ndim)
        return ma.apply_along_axis(_stdemed_1D, axis, data)

#####--------------------------------------------------------------------------
#---- --- Normality Tests ---
#####-------------------------------------------------------------------------- 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:33,代码来源:mstats_basic.py

示例12: sem

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import sqrt [as 别名]
def sem(a, axis=0):
    a, axis = _chk_asarray(a, axis)
    n = a.count(axis=axis)
    s = a.std(axis=axis,ddof=0) / ma.sqrt(n-1)
    return s 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:7,代码来源:mstats_basic.py

示例13: f_value_wilks_lambda

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import sqrt [as 别名]
def f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b):
    """Calculation of Wilks lambda F-statistic for multivarite data, per
    Maxwell & Delaney p.657.
    """
    ER = ma.array(ER, copy=False, ndmin=2)
    EF = ma.array(EF, copy=False, ndmin=2)
    if ma.getmask(ER).any() or ma.getmask(EF).any():
        raise NotImplementedError("Not implemented when the inputs "
                                  "have missing data")
    lmbda = np.linalg.det(EF) / np.linalg.det(ER)
    q = ma.sqrt(((a-1)**2*(b-1)**2 - 2) / ((a-1)**2 + (b-1)**2 - 5))
    q = ma.filled(q, 1)
    n_um = (1 - lmbda**(1.0/q))*(a-1)*(b-1)
    d_en = lmbda**(1.0/q) / (n_um*q - 0.5*(a-1)*(b-1) + 1)
    return n_um / d_en 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:17,代码来源:mstats_basic.py

示例14: vector_sum

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import sqrt [as 别名]
def vector_sum(x_arr, y_arr):
    """
    Calculate the vector sum of arrays of
    x and y vectors.

    :param x_arr: array of x-directed vectors
    :type x_arr: numpy.array
    :param y_arr: array of y-directed vectors
    :type y_arr: numpy.array
    :return: array of vector sums
    :rtype: numpy.array

    """
    return ma.sqrt(x_arr**2 + y_arr**2) 
开发者ID:NOAA-ORR-ERD,项目名称:gridded,代码行数:16,代码来源:processing_2d.py

示例15: cart2polar

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import sqrt [as 别名]
def cart2polar(x, y, degrees=True):
    """
    Convert cartesian X and Y to polar RHO and THETA.
    :param x: x cartesian coordinate
    :param y: y cartesian coordinate
    :param degrees: True = return theta in degrees, False = return theta in
        radians. [default: True]
    :return: r, theta
    """
    rho = ma.sqrt(x ** 2 + y ** 2)
    theta = ma.arctan2(y, x)
    if degrees:
        theta *= (180 / math.pi)

    return rho, theta 
开发者ID:aws-samples,项目名称:aws-greengrass-mini-fulfillment,代码行数:17,代码来源:stages.py


注:本文中的numpy.ma.sqrt方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。