本文整理汇总了Python中numpy.ma.make_mask方法的典型用法代码示例。如果您正苦于以下问题:Python ma.make_mask方法的具体用法?Python ma.make_mask怎么用?Python ma.make_mask使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy.ma
的用法示例。
在下文中一共展示了ma.make_mask方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_hardmask
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import make_mask [as 别名]
def test_hardmask(self):
# Test hardmask
base = self.base.copy()
mbase = base.view(mrecarray)
mbase.harden_mask()
assert_(mbase._hardmask)
mbase.mask = nomask
assert_equal_records(mbase._mask, base._mask)
mbase.soften_mask()
assert_(not mbase._hardmask)
mbase.mask = nomask
# So, the mask of a field is no longer set to nomask...
assert_equal_records(mbase._mask,
ma.make_mask_none(base.shape, base.dtype))
assert_(ma.make_mask(mbase['b']._mask) is nomask)
assert_equal(mbase['a']._mask, mbase['b']._mask)
示例2: test_hardmask
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import make_mask [as 别名]
def test_hardmask(self):
# Test hardmask
base = self.base.copy()
mbase = base.view(mrecarray)
mbase.harden_mask()
self.assertTrue(mbase._hardmask)
mbase.mask = nomask
assert_equal_records(mbase._mask, base._mask)
mbase.soften_mask()
self.assertTrue(not mbase._hardmask)
mbase.mask = nomask
# So, the mask of a field is no longer set to nomask...
assert_equal_records(mbase._mask,
ma.make_mask_none(base.shape, base.dtype))
self.assertTrue(ma.make_mask(mbase['b']._mask) is nomask)
assert_equal(mbase['a']._mask, mbase['b']._mask)
示例3: test_hardmask
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import make_mask [as 别名]
def test_hardmask(self):
"Test hardmask"
base = self.base.copy()
mbase = base.view(mrecarray)
mbase.harden_mask()
self.assertTrue(mbase._hardmask)
mbase.mask = nomask
assert_equal_records(mbase._mask, base._mask)
mbase.soften_mask()
self.assertTrue(not mbase._hardmask)
mbase.mask = nomask
# So, the mask of a field is no longer set to nomask...
assert_equal_records(mbase._mask,
ma.make_mask_none(base.shape, base.dtype))
self.assertTrue(ma.make_mask(mbase['b']._mask) is nomask)
assert_equal(mbase['a']._mask, mbase['b']._mask)
#
示例4: test_hdmedian
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import make_mask [as 别名]
def test_hdmedian():
# 1-D array
x = ma.arange(11)
assert_allclose(ms.hdmedian(x), 5, rtol=1e-14)
x.mask = ma.make_mask(x)
x.mask[:7] = False
assert_allclose(ms.hdmedian(x), 3, rtol=1e-14)
# Check that `var` keyword returns a value. TODO: check whether returned
# value is actually correct.
assert_(ms.hdmedian(x, var=True).size == 2)
# 2-D array
x2 = ma.arange(22).reshape((11, 2))
assert_allclose(ms.hdmedian(x2, axis=0), [10, 11])
x2.mask = ma.make_mask(x2)
x2.mask[:7, :] = False
assert_allclose(ms.hdmedian(x2, axis=0), [6, 7])
示例5: latin_sampler
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import make_mask [as 别名]
def latin_sampler(locator, num_samples, variables):
"""
This script creates a matrix of m x n samples using the latin hypercube sampler.
for this, it uses the database of probability distribtutions stored in locator.get_uncertainty_db()
it returns clean and normalized samples.
:param locator: pointer to locator of files of CEA
:param num_samples: number of samples to do
:param variables: list of variables to sample
:return:
1. design: a matrix m x n with the samples where each feature is normalized from [0,1]
2. design_norm: a matrix m x n with the samples where each feature is normalized from [0,1]
3. pdf_list: a dataframe with properties of the probability density functions used in the exercise.
"""
# get probability density function PDF of variables of interest
variable_groups = ('ENVELOPE', 'INDOOR_COMFORT', 'INTERNAL_LOADS','SYSTEMS')
database = pd.concat([pd.read_excel(locator.get_uncertainty_db(), group, axis=1)
for group in variable_groups])
pdf_list = database[database['name'].isin(variables)].set_index('name')
# get number of variables
num_vars = pdf_list.shape[0] # alternatively use len(variables)
# get design of experiments
samples = latin_hypercube.lhs(num_vars, samples=num_samples, criterion='maximin')
for i, variable in enumerate(variables):
distribution = pdf_list.loc[variable, 'distribution']
#sampling into lhs
min = pdf_list.loc[variable, 'min']
max = pdf_list.loc[variable, 'max']
mu = pdf_list.loc[variable, 'mu']
stdv = pdf_list.loc[variable, 'stdv']
if distribution == 'triangular':
loc = min
scale = max - min
c = (mu - min) / (max - min)
samples[:, i] = triang(loc=loc, c=c, scale=scale).ppf(samples[:, i])
elif distribution == 'normal':
samples[:, i] = norm(loc=mu, scale=stdv).ppf(samples[:, i])
elif distribution == 'boolean': # converts a uniform (0-1) into True/False
samples[:, i] = ma.make_mask(np.rint(uniform(loc=min, scale=max).ppf(samples[:, i])))
else: # assume it is uniform
samples[:, i] = uniform(loc=min, scale=max).ppf(samples[:, i])
min_max_scaler = preprocessing.MinMaxScaler(copy=True, feature_range=(0, 1))
samples_norm = min_max_scaler.fit_transform(samples)
return samples, samples_norm, pdf_list