本文整理汇总了Python中numpy.ma.getmask方法的典型用法代码示例。如果您正苦于以下问题:Python ma.getmask方法的具体用法?Python ma.getmask怎么用?Python ma.getmask使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy.ma
的用法示例。
在下文中一共展示了ma.getmask方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __call__
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import getmask [as 别名]
def __call__(self, value, clip=None):
if clip is None:
clip = self.clip
result, is_scalar = self.process_value(value)
self.autoscale_None(result)
vmin, vmax = self.vmin, self.vmax
if vmin > vmax:
raise ValueError("minvalue must be less than or equal to maxvalue")
elif vmin == vmax:
result.fill(0)
else:
if clip:
mask = ma.getmask(result)
result = ma.array(np.clip(result.filled(vmax), vmin, vmax),
mask=mask)
# in-place equivalent of above can be much faster
resdat = self._transform(result.data)
resdat -= self._lower
resdat /= (self._upper - self._lower)
if is_scalar:
result = result[0]
return result
示例2: pointbiserialr
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import getmask [as 别名]
def pointbiserialr(x, y):
x = ma.fix_invalid(x, copy=True).astype(bool)
y = ma.fix_invalid(y, copy=True).astype(float)
# Get rid of the missing data ..........
m = ma.mask_or(ma.getmask(x), ma.getmask(y))
if m is not nomask:
unmask = np.logical_not(m)
x = x[unmask]
y = y[unmask]
#
n = len(x)
# phat is the fraction of x values that are True
phat = x.sum() / float(n)
y0 = y[~x] # y-values where x is False
y1 = y[x] # y-values where x is True
y0m = y0.mean()
y1m = y1.mean()
#
rpb = (y1m - y0m)*np.sqrt(phat * (1-phat)) / y.std()
#
df = n-2
t = rpb*ma.sqrt(df/(1.0-rpb**2))
prob = betai(0.5*df, 0.5, df/(df+t*t))
return rpb, prob
示例3: f_value_wilks_lambda
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import getmask [as 别名]
def f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b):
"""Calculation of Wilks lambda F-statistic for multivariate data, per
Maxwell & Delaney p.657.
"""
ER = ma.array(ER, copy=False, ndmin=2)
EF = ma.array(EF, copy=False, ndmin=2)
if ma.getmask(ER).any() or ma.getmask(EF).any():
raise NotImplementedError("Not implemented when the inputs "
"have missing data")
lmbda = np.linalg.det(EF) / np.linalg.det(ER)
q = ma.sqrt(((a-1)**2*(b-1)**2 - 2) / ((a-1)**2 + (b-1)**2 - 5))
q = ma.filled(q, 1)
n_um = (1 - lmbda**(1.0/q))*(a-1)*(b-1)
d_en = lmbda**(1.0/q) / (n_um*q - 0.5*(a-1)*(b-1) + 1)
return n_um / d_en
示例4: linregress
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import getmask [as 别名]
def linregress(x, y=None):
"""
Linear regression calculation
Note that the non-masked version is used, and that this docstring is
replaced by the non-masked docstring + some info on missing data.
"""
if y is None:
x = ma.array(x)
if x.shape[0] == 2:
x, y = x
elif x.shape[1] == 2:
x, y = x.T
else:
msg = ("If only `x` is given as input, it has to be of shape "
"(2, N) or (N, 2), provided shape was %s" % str(x.shape))
raise ValueError(msg)
else:
x = ma.array(x)
y = ma.array(y)
x = x.flatten()
y = y.flatten()
m = ma.mask_or(ma.getmask(x), ma.getmask(y), shrink=False)
if m is not nomask:
x = ma.array(x, mask=m)
y = ma.array(y, mask=m)
if np.any(~m):
slope, intercept, r, prob, sterrest = stats_linregress(x.data[~m],
y.data[~m])
else:
# All data is masked
return None, None, None, None, None
else:
slope, intercept, r, prob, sterrest = stats_linregress(x.data, y.data)
return LinregressResult(slope, intercept, r, prob, sterrest)
示例5: unscented_correct
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import getmask [as 别名]
def unscented_correct(cross_sigma, moments_pred, obs_moments_pred, z):
'''Correct predicted state estimates with an observation
Parameters
----------
cross_sigma : [n_dim_state, n_dim_obs] array
cross-covariance between the state at time t given all observations
from timesteps [0, t-1] and the observation at time t
moments_pred : [n_dim_state] Moments
mean and covariance of state at time t given observations from
timesteps [0, t-1]
obs_moments_pred : [n_dim_obs] Moments
mean and covariance of observation at time t given observations from
times [0, t-1]
z : [n_dim_obs] array
observation at time t
Returns
-------
moments_filt : [n_dim_state] Moments
mean and covariance of state at time t given observations from time
steps [0, t]
'''
mu_pred, sigma_pred = moments_pred
obs_mu_pred, obs_sigma_pred = obs_moments_pred
n_dim_state = len(mu_pred)
n_dim_obs = len(obs_mu_pred)
if not np.any(ma.getmask(z)):
# calculate Kalman gain
K = cross_sigma.dot(linalg.pinv(obs_sigma_pred))
# correct mu, sigma
mu_filt = mu_pred + K.dot(z - obs_mu_pred)
sigma_filt = sigma_pred - K.dot(cross_sigma.T)
else:
# no corrections to be made
mu_filt = mu_pred
sigma_filt = sigma_pred
return Moments(mu_filt, sigma_filt)
示例6: transform_affine
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import getmask [as 别名]
def transform_affine(self, points):
mtx = self.get_matrix()
if isinstance(points, MaskedArray):
tpoints = affine_transform(points.data, mtx)
return ma.MaskedArray(tpoints, mask=ma.getmask(points))
return affine_transform(points, mtx)
示例7: _process_args
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import getmask [as 别名]
def _process_args(self, *args, **kwargs):
"""
Process args and kwargs.
"""
if isinstance(args[0], QuadContourSet):
C = args[0].Cntr
if self.levels is None:
self.levels = args[0].levels
self.zmin = args[0].zmin
self.zmax = args[0].zmax
else:
x, y, z = self._contour_args(args, kwargs)
_mask = ma.getmask(z)
if _mask is ma.nomask:
_mask = None
C = _cntr.Cntr(x, y, z.filled(), _mask)
t = self.get_transform()
# if the transform is not trans data, and some part of it
# contains transData, transform the xs and ys to data coordinates
if (t != self.ax.transData and
any(t.contains_branch_seperately(self.ax.transData))):
trans_to_data = t - self.ax.transData
pts = (np.vstack([x.flat, y.flat]).T)
transformed_pts = trans_to_data.transform(pts)
x = transformed_pts[..., 0]
y = transformed_pts[..., 1]
x0 = ma.minimum(x)
x1 = ma.maximum(x)
y0 = ma.minimum(y)
y1 = ma.maximum(y)
self.ax.update_datalim([(x0, y0), (x1, y1)])
self.ax.autoscale_view(tight=True)
self.Cntr = C
示例8: linregress
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import getmask [as 别名]
def linregress(*args):
if len(args) == 1: # more than 1D array?
args = ma.array(args[0], copy=True)
if len(args) == 2:
x = args[0]
y = args[1]
else:
x = args[:,0]
y = args[:,1]
else:
x = ma.array(args[0]).flatten()
y = ma.array(args[1]).flatten()
m = ma.mask_or(ma.getmask(x), ma.getmask(y))
if m is not nomask:
x = ma.array(x,mask=m)
y = ma.array(y,mask=m)
n = len(x)
(xmean, ymean) = (x.mean(), y.mean())
(xm, ym) = (x-xmean, y-ymean)
(Sxx, Syy) = (ma.add.reduce(xm*xm), ma.add.reduce(ym*ym))
Sxy = ma.add.reduce(xm*ym)
r_den = ma.sqrt(Sxx*Syy)
if r_den == 0.0:
r = 0.0
else:
r = Sxy / r_den
if (r > 1.0):
r = 1.0 # from numerical error
# z = 0.5*log((1.0+r+TINY)/(1.0-r+TINY))
df = n-2
t = r * ma.sqrt(df/(1.0-r*r))
prob = betai(0.5*df,0.5,df/(df+t*t))
slope = Sxy / Sxx
intercept = ymean - slope*xmean
sterrest = ma.sqrt(1.-r*r) * y.std()
return slope, intercept, r, prob, sterrest
示例9: f_value_wilks_lambda
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import getmask [as 别名]
def f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b):
"""Calculation of Wilks lambda F-statistic for multivarite data, per
Maxwell & Delaney p.657.
"""
ER = ma.array(ER, copy=False, ndmin=2)
EF = ma.array(EF, copy=False, ndmin=2)
if ma.getmask(ER).any() or ma.getmask(EF).any():
raise NotImplementedError("Not implemented when the inputs "
"have missing data")
lmbda = np.linalg.det(EF) / np.linalg.det(ER)
q = ma.sqrt(((a-1)**2*(b-1)**2 - 2) / ((a-1)**2 + (b-1)**2 - 5))
q = ma.filled(q, 1)
n_um = (1 - lmbda**(1.0/q))*(a-1)*(b-1)
d_en = lmbda**(1.0/q) / (n_um*q - 0.5*(a-1)*(b-1) + 1)
return n_um / d_en
示例10: getDataOnly
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import getmask [as 别名]
def getDataOnly(array1d):
'''
Removes redundant no data slots in a 1D array
Note that sometimes data is missing within the array, so in the majority of cases, the array just needs to be shortened, but in a small number of cases, the 'within array' no data needs to be replaced
:param array1d:
:return: Simple array of numbers
'''
if np.any(ma.getmask(array1d)):
mymask = np.invert(ma.getmask(array1d))
outarray = ma.getdata(array1d)[mymask]
else:
outarray = ma.getdata(array1d)
return outarray
示例11: count_tied_groups
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import getmask [as 别名]
def count_tied_groups(x, use_missing=False):
"""
Counts the number of tied values.
Parameters
----------
x : sequence
Sequence of data on which to counts the ties
use_missing : bool, optional
Whether to consider missing values as tied.
Returns
-------
count_tied_groups : dict
Returns a dictionary (nb of ties: nb of groups).
Examples
--------
>>> from scipy.stats import mstats
>>> z = [0, 0, 0, 2, 2, 2, 3, 3, 4, 5, 6]
>>> mstats.count_tied_groups(z)
{2: 1, 3: 2}
In the above example, the ties were 0 (3x), 2 (3x) and 3 (2x).
>>> z = np.ma.array([0, 0, 1, 2, 2, 2, 3, 3, 4, 5, 6])
>>> mstats.count_tied_groups(z)
{2: 2, 3: 1}
>>> z[[1,-1]] = np.ma.masked
>>> mstats.count_tied_groups(z, use_missing=True)
{2: 2, 3: 1}
"""
nmasked = ma.getmask(x).sum()
# We need the copy as find_repeats will overwrite the initial data
data = ma.compressed(x).copy()
(ties, counts) = find_repeats(data)
nties = {}
if len(ties):
nties = dict(zip(np.unique(counts), itertools.repeat(1)))
nties.update(dict(zip(*find_repeats(counts))))
if nmasked and use_missing:
try:
nties[nmasked] += 1
except KeyError:
nties[nmasked] = 1
return nties
示例12: pointbiserialr
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import getmask [as 别名]
def pointbiserialr(x, y):
"""Calculates a point biserial correlation coefficient and its p-value.
Parameters
----------
x : array_like of bools
Input array.
y : array_like
Input array.
Returns
-------
correlation : float
R value
pvalue : float
2-tailed p-value
Notes
-----
Missing values are considered pair-wise: if a value is missing in x,
the corresponding value in y is masked.
For more details on `pointbiserialr`, see `stats.pointbiserialr`.
"""
x = ma.fix_invalid(x, copy=True).astype(bool)
y = ma.fix_invalid(y, copy=True).astype(float)
# Get rid of the missing data
m = ma.mask_or(ma.getmask(x), ma.getmask(y))
if m is not nomask:
unmask = np.logical_not(m)
x = x[unmask]
y = y[unmask]
n = len(x)
# phat is the fraction of x values that are True
phat = x.sum() / float(n)
y0 = y[~x] # y-values where x is False
y1 = y[x] # y-values where x is True
y0m = y0.mean()
y1m = y1.mean()
rpb = (y1m - y0m)*np.sqrt(phat * (1-phat)) / y.std()
df = n-2
t = rpb*ma.sqrt(df/(1.0-rpb**2))
prob = _betai(0.5*df, 0.5, df/(df+t*t))
return PointbiserialrResult(rpb, prob)
示例13: theilslopes
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import getmask [as 别名]
def theilslopes(y, x=None, alpha=0.95):
r"""
Computes the Theil-Sen estimator for a set of points (x, y).
`theilslopes` implements a method for robust linear regression. It
computes the slope as the median of all slopes between paired values.
Parameters
----------
y : array_like
Dependent variable.
x : array_like or None, optional
Independent variable. If None, use ``arange(len(y))`` instead.
alpha : float, optional
Confidence degree between 0 and 1. Default is 95% confidence.
Note that `alpha` is symmetric around 0.5, i.e. both 0.1 and 0.9 are
interpreted as "find the 90% confidence interval".
Returns
-------
medslope : float
Theil slope.
medintercept : float
Intercept of the Theil line, as ``median(y) - medslope*median(x)``.
lo_slope : float
Lower bound of the confidence interval on `medslope`.
up_slope : float
Upper bound of the confidence interval on `medslope`.
Notes
-----
For more details on `theilslopes`, see `stats.theilslopes`.
"""
y = ma.asarray(y).flatten()
if x is None:
x = ma.arange(len(y), dtype=float)
else:
x = ma.asarray(x).flatten()
if len(x) != len(y):
raise ValueError("Incompatible lengths ! (%s<>%s)" % (len(y),len(x)))
m = ma.mask_or(ma.getmask(x), ma.getmask(y))
y._mask = x._mask = m
# Disregard any masked elements of x or y
y = y.compressed()
x = x.compressed().astype(float)
# We now have unmasked arrays so can use `stats.theilslopes`
return stats_theilslopes(y, x, alpha=alpha)
示例14: _unscented_correct
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import getmask [as 别名]
def _unscented_correct(cross_sigma, moments_pred, obs_moments_pred, z):
'''Correct predicted state estimates with an observation
Parameters
----------
cross_sigma : [n_dim_state, n_dim_obs] array
cross-covariance between the state at time t given all observations
from timesteps [0, t-1] and the observation at time t
moments_pred : [n_dim_state] Moments
mean and covariance of state at time t given observations from
timesteps [0, t-1]
obs_moments_pred : [n_dim_obs] Moments
mean and covariance of observation at time t given observations from
times [0, t-1]
z : [n_dim_obs] array
observation at time t
Returns
-------
moments_filt : [n_dim_state] Moments
mean and covariance of state at time t given observations from time
steps [0, t]
'''
mu_pred, sigma2_pred = moments_pred
obs_mu_pred, obs_sigma2_pred = obs_moments_pred
n_dim_state = len(mu_pred)
n_dim_obs = len(obs_mu_pred)
if not np.any(ma.getmask(z)):
##############################################
# Same as this, but more stable (supposedly) #
##############################################
# K = cross_sigma.dot(
# linalg.pinv(
# obs_sigma2_pred.T.dot(obs_sigma2_pred)
# )
# )
##############################################
# equivalent to this MATLAB code
# K = (cross_sigma / obs_sigma2_pred.T) / obs_sigma2_pred
K = linalg.lstsq(obs_sigma2_pred, cross_sigma.T)[0]
K = linalg.lstsq(obs_sigma2_pred.T, K)[0]
K = K.T
# correct mu, sigma
mu_filt = mu_pred + K.dot(z - obs_mu_pred)
U = K.dot(obs_sigma2_pred)
sigma2_filt = cholupdate(sigma2_pred, U.T, -1.0)
else:
# no corrections to be made
mu_filt = mu_pred
sigma2_filt = sigma2_pred
return Moments(mu_filt, sigma2_filt)
示例15: theilslopes
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import getmask [as 别名]
def theilslopes(y, x=None, alpha=0.05):
"""
Computes the Theil slope as the median of all slopes between paired values.
Parameters
----------
y : array_like
Dependent variable.
x : {None, array_like}, optional
Independent variable. If None, use arange(len(y)) instead.
alpha : float
Confidence degree.
Returns
-------
medslope : float
Theil slope
medintercept : float
Intercept of the Theil line, as median(y)-medslope*median(x)
lo_slope : float
Lower bound of the confidence interval on medslope
up_slope : float
Upper bound of the confidence interval on medslope
"""
y = ma.asarray(y).flatten()
y[-1] = masked
n = len(y)
if x is None:
x = ma.arange(len(y), dtype=float)
else:
x = ma.asarray(x).flatten()
if len(x) != n:
raise ValueError("Incompatible lengths ! (%s<>%s)" % (n,len(x)))
m = ma.mask_or(ma.getmask(x), ma.getmask(y))
y._mask = x._mask = m
ny = y.count()
#
slopes = ma.hstack([(y[i+1:]-y[i])/(x[i+1:]-x[i]) for i in range(n-1)])
slopes.sort()
medslope = ma.median(slopes)
medinter = ma.median(y) - medslope*ma.median(x)
#
if alpha > 0.5:
alpha = 1.-alpha
z = stats.distributions.norm.ppf(alpha/2.)
#
(xties, yties) = (count_tied_groups(x), count_tied_groups(y))
nt = ny*(ny-1)/2.
sigsq = (ny*(ny-1)*(2*ny+5)/18.)
sigsq -= np.sum(v*k*(k-1)*(2*k+5) for (k,v) in iteritems(xties))
sigsq -= np.sum(v*k*(k-1)*(2*k+5) for (k,v) in iteritems(yties))
sigma = np.sqrt(sigsq)
Ru = min(np.round((nt - z*sigma)/2. + 1), len(slopes)-1)
Rl = max(np.round((nt + z*sigma)/2.), 0)
delta = slopes[[Rl,Ru]]
return medslope, medinter, delta[0], delta[1]