当前位置: 首页>>代码示例>>Python>>正文


Python ma.fix_invalid方法代码示例

本文整理汇总了Python中numpy.ma.fix_invalid方法的典型用法代码示例。如果您正苦于以下问题:Python ma.fix_invalid方法的具体用法?Python ma.fix_invalid怎么用?Python ma.fix_invalid使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy.ma的用法示例。


在下文中一共展示了ma.fix_invalid方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: pointbiserialr

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import fix_invalid [as 别名]
def pointbiserialr(x, y):
    x = ma.fix_invalid(x, copy=True).astype(bool)
    y = ma.fix_invalid(y, copy=True).astype(float)
    # Get rid of the missing data ..........
    m = ma.mask_or(ma.getmask(x), ma.getmask(y))
    if m is not nomask:
        unmask = np.logical_not(m)
        x = x[unmask]
        y = y[unmask]
    #
    n = len(x)
    # phat is the fraction of x values that are True
    phat = x.sum() / float(n)
    y0 = y[~x]  # y-values where x is False
    y1 = y[x]  # y-values where x is True
    y0m = y0.mean()
    y1m = y1.mean()
    #
    rpb = (y1m - y0m)*np.sqrt(phat * (1-phat)) / y.std()
    #
    df = n-2
    t = rpb*ma.sqrt(df/(1.0-rpb**2))
    prob = betai(0.5*df, 0.5, df/(df+t*t))
    return rpb, prob 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:26,代码来源:mstats_basic.py

示例2: test_spearmanr

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import fix_invalid [as 别名]
def test_spearmanr(self):
        "Tests some computations of Spearman's rho"
        (x, y) = ([5.05,6.75,3.21,2.66],[1.65,2.64,2.64,6.95])
        assert_almost_equal(mstats.spearmanr(x,y)[0], -0.6324555)
        (x, y) = ([5.05,6.75,3.21,2.66,np.nan],[1.65,2.64,2.64,6.95,np.nan])
        (x, y) = (ma.fix_invalid(x), ma.fix_invalid(y))
        assert_almost_equal(mstats.spearmanr(x,y)[0], -0.6324555)
        #
        x = [2.0, 47.4, 42.0, 10.8, 60.1, 1.7, 64.0, 63.1,
              1.0, 1.4, 7.9, 0.3, 3.9, 0.3, 6.7]
        y = [22.6, 08.3, 44.4, 11.9, 24.6, 0.6, 5.7, 41.6,
              0.0, 0.6, 6.7, 3.8, 1.0, 1.2, 1.4]
        assert_almost_equal(mstats.spearmanr(x,y)[0], 0.6887299)
        x = [2.0, 47.4, 42.0, 10.8, 60.1, 1.7, 64.0, 63.1,
              1.0, 1.4, 7.9, 0.3, 3.9, 0.3, 6.7, np.nan]
        y = [22.6, 08.3, 44.4, 11.9, 24.6, 0.6, 5.7, 41.6,
              0.0, 0.6, 6.7, 3.8, 1.0, 1.2, 1.4, np.nan]
        (x, y) = (ma.fix_invalid(x), ma.fix_invalid(y))
        assert_almost_equal(mstats.spearmanr(x,y)[0], 0.6887299) 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:21,代码来源:test_mstats_basic.py

示例3: test_kendalltau

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import fix_invalid [as 别名]
def test_kendalltau(self):
        "Tests some computations of Kendall's tau"
        x = ma.fix_invalid([5.05, 6.75, 3.21, 2.66,np.nan])
        y = ma.fix_invalid([1.65, 26.5, -5.93, 7.96, np.nan])
        z = ma.fix_invalid([1.65, 2.64, 2.64, 6.95, np.nan])
        assert_almost_equal(np.asarray(mstats.kendalltau(x,y)),
                            [+0.3333333,0.4969059])
        assert_almost_equal(np.asarray(mstats.kendalltau(x,z)),
                            [-0.5477226,0.2785987])
        #
        x = ma.fix_invalid([0, 0, 0, 0,20,20, 0,60, 0,20,
                            10,10, 0,40, 0,20, 0, 0, 0, 0, 0, np.nan])
        y = ma.fix_invalid([0,80,80,80,10,33,60, 0,67,27,
                            25,80,80,80,80,80,80, 0,10,45, np.nan, 0])
        result = mstats.kendalltau(x,y)
        assert_almost_equal(np.asarray(result), [-0.1585188, 0.4128009]) 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:18,代码来源:test_mstats_basic.py

示例4: test_friedmanchisq

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import fix_invalid [as 别名]
def test_friedmanchisq(self):
        "Tests the Friedman Chi-square test"
        # No missing values
        args = ([9.0,9.5,5.0,7.5,9.5,7.5,8.0,7.0,8.5,6.0],
                [7.0,6.5,7.0,7.5,5.0,8.0,6.0,6.5,7.0,7.0],
                [6.0,8.0,4.0,6.0,7.0,6.5,6.0,4.0,6.5,3.0])
        result = mstats.friedmanchisquare(*args)
        assert_almost_equal(result[0], 10.4737, 4)
        assert_almost_equal(result[1], 0.005317, 6)
        # Missing values
        x = [[nan,nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1],
             [4, 3, 5, 3, 2, 7, 3, 1, 1, 2, 3, 5, 3],
             [3, 2, 5, 6, 18, 4, 9, 1, 1,nan, 1, 1,nan],
             [nan, 6, 11, 4, 17,nan, 6, 1, 1, 2, 5, 1, 1]]
        x = ma.fix_invalid(x)
        result = mstats.friedmanchisquare(*x)
        assert_almost_equal(result[0], 2.0156, 4)
        assert_almost_equal(result[1], 0.5692, 4) 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:20,代码来源:test_mstats_basic.py

示例5: test_friedmanchisq

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import fix_invalid [as 别名]
def test_friedmanchisq(self):
        # No missing values
        args = ([9.0,9.5,5.0,7.5,9.5,7.5,8.0,7.0,8.5,6.0],
                [7.0,6.5,7.0,7.5,5.0,8.0,6.0,6.5,7.0,7.0],
                [6.0,8.0,4.0,6.0,7.0,6.5,6.0,4.0,6.5,3.0])
        result = mstats.friedmanchisquare(*args)
        assert_almost_equal(result[0], 10.4737, 4)
        assert_almost_equal(result[1], 0.005317, 6)
        # Missing values
        x = [[nan,nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1],
             [4, 3, 5, 3, 2, 7, 3, 1, 1, 2, 3, 5, 3],
             [3, 2, 5, 6, 18, 4, 9, 1, 1,nan, 1, 1,nan],
             [nan, 6, 11, 4, 17,nan, 6, 1, 1, 2, 5, 1, 1]]
        x = ma.fix_invalid(x)
        result = mstats.friedmanchisquare(*x)
        assert_almost_equal(result[0], 2.0156, 4)
        assert_almost_equal(result[1], 0.5692, 4)

        # test for namedtuple attributes
        attributes = ('statistic', 'pvalue')
        check_named_results(result, attributes, ma=True) 
开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:23,代码来源:test_mstats_basic.py

示例6: test_kendalltau_seasonal

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import fix_invalid [as 别名]
def test_kendalltau_seasonal(self):
        "Tests the seasonal Kendall tau."
        x = [[nan,nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1],
             [4, 3, 5, 3, 2, 7, 3, 1, 1, 2, 3, 5, 3],
             [3, 2, 5, 6, 18, 4, 9, 1, 1,nan, 1, 1,nan],
             [nan, 6, 11, 4, 17,nan, 6, 1, 1, 2, 5, 1, 1]]
        x = ma.fix_invalid(x).T
        output = mstats.kendalltau_seasonal(x)
        assert_almost_equal(output['global p-value (indep)'], 0.008, 3)
        assert_almost_equal(output['seasonal p-value'].round(2),
                            [0.18,0.53,0.20,0.04]) 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:13,代码来源:test_mstats_basic.py

示例7: test_kstwosamp

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import fix_invalid [as 别名]
def test_kstwosamp(self):
        "Tests the Kolmogorov-Smirnov 2 samples test"
        x = [[nan,nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1],
             [4, 3, 5, 3, 2, 7, 3, 1, 1, 2, 3, 5, 3],
             [3, 2, 5, 6, 18, 4, 9, 1, 1,nan, 1, 1,nan],
             [nan, 6, 11, 4, 17,nan, 6, 1, 1, 2, 5, 1, 1]]
        x = ma.fix_invalid(x).T
        (winter,spring,summer,fall) = x.T

        assert_almost_equal(np.round(mstats.ks_twosamp(winter,spring),4),
                            (0.1818,0.9892))
        assert_almost_equal(np.round(mstats.ks_twosamp(winter,spring,'g'),4),
                            (0.1469,0.7734))
        assert_almost_equal(np.round(mstats.ks_twosamp(winter,spring,'l'),4),
                            (0.1818,0.6744)) 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:17,代码来源:test_mstats_basic.py

示例8: test_spearmanr

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import fix_invalid [as 别名]
def test_spearmanr(self):
        # Tests some computations of Spearman's rho
        (x, y) = ([5.05,6.75,3.21,2.66],[1.65,2.64,2.64,6.95])
        assert_almost_equal(mstats.spearmanr(x,y)[0], -0.6324555)
        (x, y) = ([5.05,6.75,3.21,2.66,np.nan],[1.65,2.64,2.64,6.95,np.nan])
        (x, y) = (ma.fix_invalid(x), ma.fix_invalid(y))
        assert_almost_equal(mstats.spearmanr(x,y)[0], -0.6324555)

        x = [2.0, 47.4, 42.0, 10.8, 60.1, 1.7, 64.0, 63.1,
              1.0, 1.4, 7.9, 0.3, 3.9, 0.3, 6.7]
        y = [22.6, 8.3, 44.4, 11.9, 24.6, 0.6, 5.7, 41.6,
              0.0, 0.6, 6.7, 3.8, 1.0, 1.2, 1.4]
        assert_almost_equal(mstats.spearmanr(x,y)[0], 0.6887299)
        x = [2.0, 47.4, 42.0, 10.8, 60.1, 1.7, 64.0, 63.1,
              1.0, 1.4, 7.9, 0.3, 3.9, 0.3, 6.7, np.nan]
        y = [22.6, 8.3, 44.4, 11.9, 24.6, 0.6, 5.7, 41.6,
              0.0, 0.6, 6.7, 3.8, 1.0, 1.2, 1.4, np.nan]
        (x, y) = (ma.fix_invalid(x), ma.fix_invalid(y))
        assert_almost_equal(mstats.spearmanr(x,y)[0], 0.6887299)
        # Next test is to make sure calculation uses sufficient precision.
        # The denominator's value is ~n^3 and used to be represented as an
        # int. 2000**3 > 2**32 so these arrays would cause overflow on
        # some machines.
        x = list(range(2000))
        y = list(range(2000))
        y[0], y[9] = y[9], y[0]
        y[10], y[434] = y[434], y[10]
        y[435], y[1509] = y[1509], y[435]
        # rho = 1 - 6 * (2 * (9^2 + 424^2 + 1074^2))/(2000 * (2000^2 - 1))
        #     = 1 - (1 / 500)
        #     = 0.998
        assert_almost_equal(mstats.spearmanr(x,y)[0], 0.998)

        # test for namedtuple attributes
        res = mstats.spearmanr(x, y)
        attributes = ('correlation', 'pvalue')
        check_named_results(res, attributes, ma=True) 
开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:39,代码来源:test_mstats_basic.py

示例9: test_kendalltau

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import fix_invalid [as 别名]
def test_kendalltau(self):
        # Tests some computations of Kendall's tau
        x = ma.fix_invalid([5.05, 6.75, 3.21, 2.66,np.nan])
        y = ma.fix_invalid([1.65, 26.5, -5.93, 7.96, np.nan])
        z = ma.fix_invalid([1.65, 2.64, 2.64, 6.95, np.nan])
        assert_almost_equal(np.asarray(mstats.kendalltau(x,y)),
                            [+0.3333333,0.4969059])
        assert_almost_equal(np.asarray(mstats.kendalltau(x,z)),
                            [-0.5477226,0.2785987])
        #
        x = ma.fix_invalid([0, 0, 0, 0,20,20, 0,60, 0,20,
                            10,10, 0,40, 0,20, 0, 0, 0, 0, 0, np.nan])
        y = ma.fix_invalid([0,80,80,80,10,33,60, 0,67,27,
                            25,80,80,80,80,80,80, 0,10,45, np.nan, 0])
        result = mstats.kendalltau(x,y)
        assert_almost_equal(np.asarray(result), [-0.1585188, 0.4128009])
        # make sure internal variable use correct precision with
        # larger arrays
        x = np.arange(2000, dtype=float)
        x = ma.masked_greater(x, 1995)
        y = np.arange(2000, dtype=float)
        y = np.concatenate((y[1000:], y[:1000]))
        assert_(np.isfinite(mstats.kendalltau(x,y)[1]))

        # test for namedtuple attributes
        res = mstats.kendalltau(x, y)
        attributes = ('correlation', 'pvalue')
        check_named_results(res, attributes, ma=True) 
开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:30,代码来源:test_mstats_basic.py

示例10: test_kendalltau_seasonal

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import fix_invalid [as 别名]
def test_kendalltau_seasonal(self):
        # Tests the seasonal Kendall tau.
        x = [[nan,nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1],
             [4, 3, 5, 3, 2, 7, 3, 1, 1, 2, 3, 5, 3],
             [3, 2, 5, 6, 18, 4, 9, 1, 1,nan, 1, 1,nan],
             [nan, 6, 11, 4, 17,nan, 6, 1, 1, 2, 5, 1, 1]]
        x = ma.fix_invalid(x).T
        output = mstats.kendalltau_seasonal(x)
        assert_almost_equal(output['global p-value (indep)'], 0.008, 3)
        assert_almost_equal(output['seasonal p-value'].round(2),
                            [0.18,0.53,0.20,0.04]) 
开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:13,代码来源:test_mstats_basic.py

示例11: test_kstwosamp

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import fix_invalid [as 别名]
def test_kstwosamp(self):
        x = [[nan,nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1],
             [4, 3, 5, 3, 2, 7, 3, 1, 1, 2, 3, 5, 3],
             [3, 2, 5, 6, 18, 4, 9, 1, 1,nan, 1, 1,nan],
             [nan, 6, 11, 4, 17,nan, 6, 1, 1, 2, 5, 1, 1]]
        x = ma.fix_invalid(x).T
        (winter,spring,summer,fall) = x.T

        assert_almost_equal(np.round(mstats.ks_twosamp(winter,spring),4),
                            (0.1818,0.9892))
        assert_almost_equal(np.round(mstats.ks_twosamp(winter,spring,'g'),4),
                            (0.1469,0.7734))
        assert_almost_equal(np.round(mstats.ks_twosamp(winter,spring,'l'),4),
                            (0.1818,0.6744)) 
开发者ID:Relph1119,项目名称:GraphicDesignPatternByPython,代码行数:16,代码来源:test_mstats_basic.py

示例12: impute_missing_total_reads

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import fix_invalid [as 别名]
def impute_missing_total_reads(total_reads, missing_variant_confidence):
  # Change NaNs to masked values via SciPy.
  masked_total_reads = ma.fix_invalid(total_reads)

  # Going forward, suppose you have v variants and s samples in a v*s matrix of
  # read counts. Missing values are masked.

  # Calculate geometric mean of variant read depth in each sample. Result: s*1
  sample_means = gmean(masked_total_reads, axis=0)
  assert np.sum(sample_means <= 0) == np.sum(np.isnan(sample_means)) == 0
  # Divide every variant's read count by its mean sample read depth to get read
  # depth enrichment relative to other variants in sample. Result: v*s
  normalized_to_sample = np.dot(masked_total_reads, np.diag(1./sample_means))
  # For each variant, calculate geometric mean of its read depth enrichment
  # across samples. Result: v*1
  variant_mean_reads = gmean(normalized_to_sample, axis=1)
  assert np.sum(variant_mean_reads <= 0) == np.sum(np.isnan(variant_mean_reads)) == 0

  # Convert 1D arrays to vectors to permit matrix multiplication.
  imputed_counts = np.dot(variant_mean_reads.reshape((-1, 1)), sample_means.reshape((1, -1)))
  nan_coords = np.where(np.isnan(total_reads))
  total_reads[nan_coords] = imputed_counts[nan_coords]
  assert np.sum(total_reads <= 0) == np.sum(np.isnan(total_reads)) == 0

  total_reads[nan_coords] *= missing_variant_confidence
  return np.floor(total_reads).astype(np.int) 
开发者ID:morrislab,项目名称:phylowgs,代码行数:28,代码来源:create_phylowgs_inputs.py

示例13: pointbiserialr

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import fix_invalid [as 别名]
def pointbiserialr(x, y):
    """Calculates a point biserial correlation coefficient and its p-value.

    Parameters
    ----------
    x : array_like of bools
        Input array.
    y : array_like
        Input array.

    Returns
    -------
    correlation : float
        R value
    pvalue : float
        2-tailed p-value

    Notes
    -----
    Missing values are considered pair-wise: if a value is missing in x,
    the corresponding value in y is masked.

    For more details on `pointbiserialr`, see `stats.pointbiserialr`.

    """
    x = ma.fix_invalid(x, copy=True).astype(bool)
    y = ma.fix_invalid(y, copy=True).astype(float)
    # Get rid of the missing data
    m = ma.mask_or(ma.getmask(x), ma.getmask(y))
    if m is not nomask:
        unmask = np.logical_not(m)
        x = x[unmask]
        y = y[unmask]

    n = len(x)
    # phat is the fraction of x values that are True
    phat = x.sum() / float(n)
    y0 = y[~x]  # y-values where x is False
    y1 = y[x]  # y-values where x is True
    y0m = y0.mean()
    y1m = y1.mean()

    rpb = (y1m - y0m)*np.sqrt(phat * (1-phat)) / y.std()

    df = n-2
    t = rpb*ma.sqrt(df/(1.0-rpb**2))
    prob = _betai(0.5*df, 0.5, df/(df+t*t))

    return PointbiserialrResult(rpb, prob) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:51,代码来源:mstats_basic.py

示例14: hdquantiles_sd

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import fix_invalid [as 别名]
def hdquantiles_sd(data, prob=list([.25,.5,.75]), axis=None):
    """
    The standard error of the Harrell-Davis quantile estimates by jackknife.

    Parameters
    ----------
    data : array_like
        Data array.
    prob : sequence, optional
        Sequence of quantiles to compute.
    axis : int, optional
        Axis along which to compute the quantiles. If None, use a flattened
        array.

    Returns
    -------
    hdquantiles_sd : MaskedArray
        Standard error of the Harrell-Davis quantile estimates.

    See Also
    --------
    hdquantiles

    """
    def _hdsd_1D(data, prob):
        "Computes the std error for 1D arrays."
        xsorted = np.sort(data.compressed())
        n = len(xsorted)

        hdsd = np.empty(len(prob), float_)
        if n < 2:
            hdsd.flat = np.nan

        vv = np.arange(n) / float(n-1)
        betacdf = beta.cdf

        for (i,p) in enumerate(prob):
            _w = betacdf(vv, (n+1)*p, (n+1)*(1-p))
            w = _w[1:] - _w[:-1]
            mx_ = np.fromiter([np.dot(w,xsorted[np.r_[list(range(0,k)),
                                                      list(range(k+1,n))].astype(int_)])
                                  for k in range(n)], dtype=float_)
            mx_var = np.array(mx_.var(), copy=False, ndmin=1) * n / float(n-1)
            hdsd[i] = float(n-1) * np.sqrt(np.diag(mx_var).diagonal() / float(n))
        return hdsd

    # Initialization & checks
    data = ma.array(data, copy=False, dtype=float_)
    p = np.array(prob, copy=False, ndmin=1)
    # Computes quantiles along axis (or globally)
    if (axis is None):
        result = _hdsd_1D(data, p)
    else:
        if data.ndim > 2:
            raise ValueError("Array 'data' must be at most two dimensional, "
                             "but got data.ndim = %d" % data.ndim)
        result = ma.apply_along_axis(_hdsd_1D, axis, data, p)

    return ma.fix_invalid(result, copy=False).ravel() 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:61,代码来源:mstats_extras.py

示例15: hdquantiles_sd

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import fix_invalid [as 别名]
def hdquantiles_sd(data, prob=list([.25,.5,.75]), axis=None):
    """
    The standard error of the Harrell-Davis quantile estimates by jackknife.

    Parameters
    ----------
    data : array_like
        Data array.
    prob : sequence
        Sequence of quantiles to compute.
    axis : int
        Axis along which to compute the quantiles. If None, use a flattened
        array.

    Returns
    -------
    hdquantiles_sd : MaskedArray
        Standard error of the Harrell-Davis quantile estimates.

    """
    def _hdsd_1D(data,prob):
        "Computes the std error for 1D arrays."
        xsorted = np.sort(data.compressed())
        n = len(xsorted)
        #.........
        hdsd = np.empty(len(prob), float_)
        if n < 2:
            hdsd.flat = np.nan
        #.........
        vv = np.arange(n) / float(n-1)
        betacdf = beta.cdf
        #
        for (i,p) in enumerate(prob):
            _w = betacdf(vv, (n+1)*p, (n+1)*(1-p))
            w = _w[1:] - _w[:-1]
            mx_ = np.fromiter([np.dot(w,xsorted[np.r_[list(range(0,k)),
                                                      list(range(k+1,n))].astype(int_)])
                                  for k in range(n)], dtype=float_)
            mx_var = np.array(mx_.var(), copy=False, ndmin=1) * n / float(n-1)
            hdsd[i] = float(n-1) * np.sqrt(np.diag(mx_var).diagonal() / float(n))
        return hdsd
    # Initialization & checks ---------
    data = ma.array(data, copy=False, dtype=float_)
    p = np.array(prob, copy=False, ndmin=1)
    # Computes quantiles along axis (or globally)
    if (axis is None):
        result = _hdsd_1D(data, p)
    else:
        if data.ndim > 2:
            raise ValueError("Array 'data' must be at most two dimensional, but got data.ndim = %d" % data.ndim)
        result = ma.apply_along_axis(_hdsd_1D, axis, data, p)
    #
    return ma.fix_invalid(result, copy=False).ravel()


#####--------------------------------------------------------------------------
#---- --- Confidence intervals ---
#####-------------------------------------------------------------------------- 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:60,代码来源:mstats_extras.py


注:本文中的numpy.ma.fix_invalid方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。