当前位置: 首页>>代码示例>>Python>>正文


Python ma.expand_dims方法代码示例

本文整理汇总了Python中numpy.ma.expand_dims方法的典型用法代码示例。如果您正苦于以下问题:Python ma.expand_dims方法的具体用法?Python ma.expand_dims怎么用?Python ma.expand_dims使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy.ma的用法示例。


在下文中一共展示了ma.expand_dims方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: moment

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import expand_dims [as 别名]
def moment(a, moment=1, axis=0):
    a, axis = _chk_asarray(a, axis)
    if moment == 1:
        # By definition the first moment about the mean is 0.
        shape = list(a.shape)
        del shape[axis]
        if shape:
            # return an actual array of the appropriate shape
            return np.zeros(shape, dtype=float)
        else:
            # the input was 1D, so return a scalar instead of a rank-0 array
            return np.float64(0.0)
    else:
        mn = ma.expand_dims(a.mean(axis=axis), axis)
        s = ma.power((a-mn), moment)
        return s.mean(axis=axis) 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:18,代码来源:mstats_basic.py

示例2: read

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import expand_dims [as 别名]
def read(self, indexes=None, **kwargs):
        """
        Read reprojected & resampled input data.

        Parameters
        ----------
        indexes : integer or list
            band number or list of band numbers

        Returns
        -------
        data : array
        """
        band_indexes = self._get_band_indexes(indexes)
        arr = self.process.get_raw_output(self.tile)
        return (
            arr[band_indexes[0] - 1]
            if len(band_indexes) == 1
            else ma.concatenate([ma.expand_dims(arr[i - 1], 0) for i in band_indexes])
        ) 
开发者ID:ungarj,项目名称:mapchete,代码行数:22,代码来源:gtiff.py

示例3: concatenate

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import expand_dims [as 别名]
def concatenate(self,value,axis=0):
        """ Concatentate UncertContainer value to self.
            Assumes that if dimensions of self and value do not match, to 
            add a np.newaxis along axis of value
        """

        if isinstance(value,UncertContainer):
            if value.vals.ndim == self.vals.ndim:
                vals = value.vals
                dmin = value.dmin
                dmax = value.dmax
                wt = value.wt
                uncert = value.uncert
                mask = value.mask
            elif (value.vals.ndim + 1) == self.vals.ndim:
                vals =  ma.expand_dims(value.vals,axis)
                dmin =  ma.expand_dims(value.dmin,axis)
                dmax =  ma.expand_dims(value.dmax,axis)
                wt =  ma.expand_dims(value.wt,axis)
                uncert =  ma.expand_dims(value.uncert,axis)
                mask =  np.expand_dims(value.mask,axis)
            else:
                raise ValueError('Could not propery match dimensionality')
                
            self.vals = ma.concatenate((self.vals,vals),axis=axis)
            self.dmin = ma.concatenate((self.dmin,dmin),axis=axis)
            self.dmax = ma.concatenate((self.dmax,dmax),axis=axis)
            self.wt = ma.concatenate((self.wt,wt),axis=axis)
            self.uncert = ma.concatenate((self.uncert,uncert),axis=axis)
            
            self.mask = np.concatenate((self.mask,mask),axis=axis)
        else:
            raise ValueError('Can only concatenate with an UncertContainer object') 
开发者ID:westpa,项目名称:westpa,代码行数:35,代码来源:UncertMath.py

示例4: weighted_average

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import expand_dims [as 别名]
def weighted_average(self,axis=0,expaxis=None):
        """ Calculate weighted average of data along axis
            after optionally inserting a new dimension into the
            shape array at position expaxis
        """

        if expaxis is not None:
            vals = ma.expand_dims(self.vals,expaxis)
            dmin = ma.expand_dims(self.dmin,expaxis)
            dmax = ma.expand_dims(self.dmax,expaxis)
            wt = ma.expand_dims(self.wt,expaxis)
        else:
            vals = self.vals
            wt = self.wt
            dmin = self.dmin
            dmax = self.dmax
        
        # Get average value
        avg,norm = ma.average(vals,axis=axis,weights=wt,returned=True)
        avg_ex = ma.expand_dims(avg,0)

        # Calculate weighted uncertainty
        wtmax = ma.max(wt,axis=axis)
        neff = norm/wtmax       # Effective number of samples based on uncertainties

        # Seeking max deviation from the average; if above avg use max, if below use min
        term = np.empty_like(vals)
        
        indices = np.where(vals > avg_ex)
        i0 = indices[0]
        irest = indices[1:]
        ii = tuple(x for x in itertools.chain([i0],irest))
        jj = tuple(x for x in itertools.chain([np.zeros_like(i0)],irest))
        term[ii] = (dmax[ii] - avg_ex[jj])**2
        
        indices = np.where(vals <= avg_ex)
        i0 = indices[0]
        irest = indices[1:]
        ii = tuple(x for x in itertools.chain([i0],irest))
        jj = tuple(x for x in itertools.chain([np.zeros_like(i0)],irest))
        term[ii] = (avg_ex[jj] - dmin[ii])**2
        
        dsum = ma.sum(term*wt,axis=0)     # Sum for weighted average of deviations

        dev = 0.5*np.sqrt(dsum/(norm*neff))
        
        if isinstance(avg,(float,np.float)):
            avg = avg_ex

        tmp_min = avg - dev
        ii = np.where(tmp_min < 0)
        tmp_min[ii] = TOL*avg[ii]
        
        return UncertContainer(avg,tmp_min,avg+dev) 
开发者ID:westpa,项目名称:westpa,代码行数:56,代码来源:UncertMath.py

示例5: moment

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import expand_dims [as 别名]
def moment(a, moment=1, axis=0):
    """
    Calculates the nth moment about the mean for a sample.

    Parameters
    ----------
    a : array_like
       data
    moment : int, optional
       order of central moment that is returned
    axis : int or None, optional
       Axis along which the central moment is computed. Default is 0.
       If None, compute over the whole array `a`.

    Returns
    -------
    n-th central moment : ndarray or float
       The appropriate moment along the given axis or over all values if axis
       is None. The denominator for the moment calculation is the number of
       observations, no degrees of freedom correction is done.

    Notes
    -----
    For more details about `moment`, see `stats.moment`.

    """
    a, axis = _chk_asarray(a, axis)
    if moment == 1:
        # By definition the first moment about the mean is 0.
        shape = list(a.shape)
        del shape[axis]
        if shape:
            # return an actual array of the appropriate shape
            return np.zeros(shape, dtype=float)
        else:
            # the input was 1D, so return a scalar instead of a rank-0 array
            return np.float64(0.0)
    else:
        # Exponentiation by squares: form exponent sequence
        n_list = [moment]
        current_n = moment
        while current_n > 2:
            if current_n % 2:
                current_n = (current_n-1)/2
            else:
                current_n /= 2
            n_list.append(current_n)

        # Starting point for exponentiation by squares
        a_zero_mean = a - ma.expand_dims(a.mean(axis), axis)
        if n_list[-1] == 1:
            s = a_zero_mean.copy()
        else:
            s = a_zero_mean**2

        # Perform multiplications
        for n in n_list[-2::-1]:
            s = s**2
            if n % 2:
                s *= a_zero_mean
        return s.mean(axis) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:63,代码来源:mstats_basic.py

示例6: prepare_array

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import expand_dims [as 别名]
def prepare_array(data, masked=True, nodata=0, dtype="int16"):
    """
    Turn input data into a proper array for further usage.

    Output array is always 3-dimensional with the given data type. If the output
    is masked, the fill_value corresponds to the given nodata value and the
    nodata value will be burned into the data array.

    Parameters
    ----------
    data : array or iterable
        array (masked or normal) or iterable containing arrays
    nodata : integer or float
        nodata value (default: 0) used if input is not a masked array and
        for output array
    masked : bool
        return a NumPy Array or a NumPy MaskedArray (default: True)
    dtype : string
        data type of output array (default: "int16")

    Returns
    -------
    array : array
    """
    # input is iterable
    if isinstance(data, (list, tuple)):
        return _prepare_iterable(data, masked, nodata, dtype)

    # special case if a 2D single band is provided
    elif isinstance(data, np.ndarray) and data.ndim == 2:
        data = ma.expand_dims(data, axis=0)

    # input is a masked array
    if isinstance(data, ma.MaskedArray):
        return _prepare_masked(data, masked, nodata, dtype)

    # input is a NumPy array
    elif isinstance(data, np.ndarray):
        if masked:
            return ma.masked_values(data.astype(dtype, copy=False), nodata, copy=False)
        else:
            return data.astype(dtype, copy=False)
    else:
        raise ValueError(
            "Data must be array, masked array or iterable containing arrays. "
            "Current data: %s (%s)" % (data, type(data))
        ) 
开发者ID:ungarj,项目名称:mapchete,代码行数:49,代码来源:raster.py


注:本文中的numpy.ma.expand_dims方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。