当前位置: 首页>>代码示例>>Python>>正文


Python ma.array方法代码示例

本文整理汇总了Python中numpy.ma.array方法的典型用法代码示例。如果您正苦于以下问题:Python ma.array方法的具体用法?Python ma.array怎么用?Python ma.array使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy.ma的用法示例。


在下文中一共展示了ma.array方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: eval_batch

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import array [as 别名]
def eval_batch(table_batch, label_batch, mask_batch):
    # reshap (table_batch * table_size * features)
    for f_g in table_batch:
        table_batch[f_g] = table_batch[f_g].view(batch_size * MAX_COL_COUNT, -1)

    emissions = classifier(table_batch).view(batch_size, MAX_COL_COUNT, -1)
    pred = model.decode(emissions, mask_batch)

    pred = np.concatenate(pred)
    labels = label_batch.view(-1).cpu().numpy()
    masks = mask_batch.view(-1).cpu().numpy()
    invert_masks = np.invert(masks==1)
    
    return pred, ma.array(labels, mask=invert_masks).compressed()

# randomly shuffle the orders of columns in a table batch 
开发者ID:megagonlabs,项目名称:sato,代码行数:18,代码来源:train_CRF_LC.py

示例2: _keep_fields

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import array [as 别名]
def _keep_fields(base, keep_names, usemask=True, asrecarray=False):
    """
    Return a new array keeping only the fields in `keep_names`,
    and preserving the order of those fields.

    Parameters
    ----------
    base : array
        Input array
    keep_names : string or sequence
        String or sequence of strings corresponding to the names of the
        fields to keep. Order of the names will be preserved.
    usemask : {False, True}, optional
        Whether to return a masked array or not.
    asrecarray : string or sequence, optional
        Whether to return a recarray or a mrecarray (`asrecarray=True`) or
        a plain ndarray or masked array with flexible dtype. The default
        is False.
    """
    newdtype = [(n, base.dtype[n]) for n in keep_names]
    output = np.empty(base.shape, dtype=newdtype)
    output = recursive_fill_fields(base, output)
    return _fix_output(output, usemask=usemask, asrecarray=asrecarray) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:25,代码来源:recfunctions.py

示例3: test_multiple_axes

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import array [as 别名]
def test_multiple_axes(self):
        a = np.array([[[0, 1],
                       [2, 3]],
                      [[4, 5],
                       [6, 7]]])

        assert_equal(np.flip(a, axis=()), a)

        b = np.array([[[5, 4],
                       [7, 6]],
                      [[1, 0],
                       [3, 2]]])

        assert_equal(np.flip(a, axis=(0, 2)), b)

        c = np.array([[[3, 2],
                       [1, 0]],
                      [[7, 6],
                       [5, 4]]])

        assert_equal(np.flip(a, axis=(1, 2)), c) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:23,代码来源:test_function_base.py

示例4: test_order

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import array [as 别名]
def test_order(self):
        # It turns out that people rely on np.copy() preserving order by
        # default; changing this broke scikit-learn:
        # github.com/scikit-learn/scikit-learn/commit/7842748cf777412c506a8c0ed28090711d3a3783  # noqa
        a = np.array([[1, 2], [3, 4]])
        assert_(a.flags.c_contiguous)
        assert_(not a.flags.f_contiguous)
        a_fort = np.array([[1, 2], [3, 4]], order="F")
        assert_(not a_fort.flags.c_contiguous)
        assert_(a_fort.flags.f_contiguous)
        a_copy = np.copy(a)
        assert_(a_copy.flags.c_contiguous)
        assert_(not a_copy.flags.f_contiguous)
        a_fort_copy = np.copy(a_fort)
        assert_(not a_fort_copy.flags.c_contiguous)
        assert_(a_fort_copy.flags.f_contiguous) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:18,代码来源:test_function_base.py

示例5: test_returned

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import array [as 别名]
def test_returned(self):
        y = np.array([[1, 2, 3], [4, 5, 6]])

        # No weights
        avg, scl = average(y, returned=True)
        assert_equal(scl, 6.)

        avg, scl = average(y, 0, returned=True)
        assert_array_equal(scl, np.array([2., 2., 2.]))

        avg, scl = average(y, 1, returned=True)
        assert_array_equal(scl, np.array([3., 3.]))

        # With weights
        w0 = [1, 2]
        avg, scl = average(y, weights=w0, axis=0, returned=True)
        assert_array_equal(scl, np.array([3., 3., 3.]))

        w1 = [1, 2, 3]
        avg, scl = average(y, weights=w1, axis=1, returned=True)
        assert_array_equal(scl, np.array([6., 6.]))

        w2 = [[0, 0, 1], [1, 2, 3]]
        avg, scl = average(y, weights=w2, axis=1, returned=True)
        assert_array_equal(scl, np.array([1., 6.])) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:27,代码来源:test_function_base.py

示例6: test_basic

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import array [as 别名]
def test_basic(self):
        a = [1, 2, 3]
        assert_equal(insert(a, 0, 1), [1, 1, 2, 3])
        assert_equal(insert(a, 3, 1), [1, 2, 3, 1])
        assert_equal(insert(a, [1, 1, 1], [1, 2, 3]), [1, 1, 2, 3, 2, 3])
        assert_equal(insert(a, 1, [1, 2, 3]), [1, 1, 2, 3, 2, 3])
        assert_equal(insert(a, [1, -1, 3], 9), [1, 9, 2, 9, 3, 9])
        assert_equal(insert(a, slice(-1, None, -1), 9), [9, 1, 9, 2, 9, 3])
        assert_equal(insert(a, [-1, 1, 3], [7, 8, 9]), [1, 8, 2, 7, 3, 9])
        b = np.array([0, 1], dtype=np.float64)
        assert_equal(insert(b, 0, b[0]), [0., 0., 1.])
        assert_equal(insert(b, [], []), b)
        # Bools will be treated differently in the future:
        # assert_equal(insert(a, np.array([True]*4), 9), [9, 1, 9, 2, 9, 3, 9])
        with warnings.catch_warnings(record=True) as w:
            warnings.filterwarnings('always', '', FutureWarning)
            assert_equal(
                insert(a, np.array([True] * 4), 9), [1, 9, 9, 9, 9, 2, 3])
            assert_(w[0].category is FutureWarning) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:21,代码来源:test_function_base.py

示例7: test_args

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import array [as 别名]
def test_args(self):
        dx = np.cumsum(np.ones(5))
        dx_uneven = [1., 2., 5., 9., 11.]
        f_2d = np.arange(25).reshape(5, 5)

        # distances must be scalars or have size equal to gradient[axis]
        gradient(np.arange(5), 3.)
        gradient(np.arange(5), np.array(3.))
        gradient(np.arange(5), dx)
        # dy is set equal to dx because scalar
        gradient(f_2d, 1.5)
        gradient(f_2d, np.array(1.5))

        gradient(f_2d, dx_uneven, dx_uneven)
        # mix between even and uneven spaces and
        # mix between scalar and vector
        gradient(f_2d, dx, 2)

        # 2D but axis specified
        gradient(f_2d, dx, axis=1)

        # 2d coordinate arguments are not yet allowed
        assert_raises_regex(ValueError, '.*scalars or 1d',
            gradient, f_2d, np.stack([dx]*2, axis=-1), 1) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:26,代码来源:test_function_base.py

示例8: test_specific_axes

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import array [as 别名]
def test_specific_axes(self):
        # Testing that gradient can work on a given axis only
        v = [[1, 1], [3, 4]]
        x = np.array(v)
        dx = [np.array([[2., 3.], [2., 3.]]),
              np.array([[0., 0.], [1., 1.]])]
        assert_array_equal(gradient(x, axis=0), dx[0])
        assert_array_equal(gradient(x, axis=1), dx[1])
        assert_array_equal(gradient(x, axis=-1), dx[1])
        assert_array_equal(gradient(x, axis=(1, 0)), [dx[1], dx[0]])

        # test axis=None which means all axes
        assert_almost_equal(gradient(x, axis=None), [dx[0], dx[1]])
        # and is the same as no axis keyword given
        assert_almost_equal(gradient(x, axis=None), gradient(x))

        # test vararg order
        assert_array_equal(gradient(x, 2, 3, axis=(1, 0)),
                           [dx[1]/2.0, dx[0]/3.0])
        # test maximal number of varargs
        assert_raises(TypeError, gradient, x, 1, 2, axis=1)

        assert_raises(np.AxisError, gradient, x, axis=3)
        assert_raises(np.AxisError, gradient, x, axis=-3)
        # assert_raises(TypeError, gradient, x, axis=[1,]) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:27,代码来源:test_function_base.py

示例9: test_place

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import array [as 别名]
def test_place(self):
        # Make sure that non-np.ndarray objects
        # raise an error instead of doing nothing
        assert_raises(TypeError, place, [1, 2, 3], [True, False], [0, 1])

        a = np.array([1, 4, 3, 2, 5, 8, 7])
        place(a, [0, 1, 0, 1, 0, 1, 0], [2, 4, 6])
        assert_array_equal(a, [1, 2, 3, 4, 5, 6, 7])

        place(a, np.zeros(7), [])
        assert_array_equal(a, np.arange(1, 8))

        place(a, [1, 0, 1, 0, 1, 0, 1], [8, 9])
        assert_array_equal(a, [8, 2, 9, 4, 8, 6, 9])
        assert_raises_regex(ValueError, "Cannot insert from an empty array",
                            lambda: place(a, [0, 0, 0, 0, 0, 1, 0], []))

        # See Issue #6974
        a = np.array(['12', '34'])
        place(a, [0, 1], '9')
        assert_array_equal(a, ['12', '9']) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:23,代码来源:test_function_base.py

示例10: test_keywords2_ticket_2100

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import array [as 别名]
def test_keywords2_ticket_2100(self):
        # Test kwarg support: enhancement ticket 2100

        def foo(a, b=1):
            return a + b

        f = vectorize(foo)
        args = np.array([1, 2, 3])
        r1 = f(a=args)
        r2 = np.array([2, 3, 4])
        assert_array_equal(r1, r2)
        r1 = f(b=1, a=args)
        assert_array_equal(r1, r2)
        r1 = f(args, b=2)
        r2 = np.array([3, 4, 5])
        assert_array_equal(r1, r2) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:18,代码来源:test_function_base.py

示例11: test_simple

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import array [as 别名]
def test_simple(self):
        assert_almost_equal(
            i0(0.5),
            np.array(1.0634833707413234))

        A = np.array([0.49842636, 0.6969809, 0.22011976, 0.0155549])
        assert_almost_equal(
            i0(A),
            np.array([1.06307822, 1.12518299, 1.01214991, 1.00006049]))

        B = np.array([[0.827002, 0.99959078],
                      [0.89694769, 0.39298162],
                      [0.37954418, 0.05206293],
                      [0.36465447, 0.72446427],
                      [0.48164949, 0.50324519]])
        assert_almost_equal(
            i0(B),
            np.array([[1.17843223, 1.26583466],
                      [1.21147086, 1.03898290],
                      [1.03633899, 1.00067775],
                      [1.03352052, 1.13557954],
                      [1.05884290, 1.06432317]])) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:24,代码来源:test_function_base.py

示例12: test_indexing

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import array [as 别名]
def test_indexing(self):
        x = [1, 2, 3]
        y = [4, 5, 6, 7]
        [X, Y] = meshgrid(x, y, indexing='ij')
        assert_array_equal(X, np.array([[1, 1, 1, 1],
                                        [2, 2, 2, 2],
                                        [3, 3, 3, 3]]))
        assert_array_equal(Y, np.array([[4, 5, 6, 7],
                                        [4, 5, 6, 7],
                                        [4, 5, 6, 7]]))

        # Test expected shapes:
        z = [8, 9]
        assert_(meshgrid(x, y)[0].shape == (4, 3))
        assert_(meshgrid(x, y, indexing='ij')[0].shape == (3, 4))
        assert_(meshgrid(x, y, z)[0].shape == (4, 3, 2))
        assert_(meshgrid(x, y, z, indexing='ij')[0].shape == (3, 4, 2))

        assert_raises(ValueError, meshgrid, x, y, indexing='notvalid') 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:21,代码来源:test_function_base.py

示例13: test_with_incorrect_minlength

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import array [as 别名]
def test_with_incorrect_minlength(self):
        x = np.array([], dtype=int)
        assert_raises_regex(TypeError,
                            "'str' object cannot be interpreted",
                            lambda: np.bincount(x, minlength="foobar"))
        assert_raises_regex(ValueError,
                            "must not be negative",
                            lambda: np.bincount(x, minlength=-1))

        x = np.arange(5)
        assert_raises_regex(TypeError,
                            "'str' object cannot be interpreted",
                            lambda: np.bincount(x, minlength="foobar"))
        assert_raises_regex(ValueError,
                            "must not be negative",
                            lambda: np.bincount(x, minlength=-1)) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:18,代码来源:test_function_base.py

示例14: addApexLong

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import array [as 别名]
def addApexLong(inst, *arg, **kwarg):
    magCoords = geo2mag(np.array([inst.data.edmaxlat, inst.data.edmaxlon]))
    idx, = np.where(magCoords[1, :] < 0)
    magCoords[1, idx] += 360.
    return(['mlat', 'apex_long'], [magCoords[0, :], magCoords[1, :]]) 
开发者ID:pysat,项目名称:pysat,代码行数:7,代码来源:cosmic_and_ivm_demo.py

示例15: eval_batch

# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import array [as 别名]
def eval_batch(classifier, model, val_dataset, batch_size, device, n_worker, MAX_COL_COUNT):


    validation = datasets.generate_batches(val_dataset,
                                           batch_size=batch_size,
                                           shuffle=False, 
                                           drop_last=True,
                                           device=device,
                                           n_workers=n_worker)
    y_pred, y_true = [], []
    for table_batch, label_batch, mask_batch in tqdm(validation):
        #pred, labels = eval_batch(table_batch, label_batch, mask_batch)
            
        # reshap (table_batch * table_size * features)
        for f_g in table_batch:
            table_batch[f_g] = table_batch[f_g].view(batch_size * MAX_COL_COUNT, -1)

        emissions = classifier(table_batch).view(batch_size, MAX_COL_COUNT, -1)
        pred = model.decode(emissions, mask_batch)

        pred = np.concatenate(pred)
        labels = label_batch.view(-1).cpu().numpy()
        masks = mask_batch.view(-1).cpu().numpy()
        invert_masks = np.invert(masks==1)
        
        y_pred.extend(pred)
        y_true.extend(ma.array(labels, mask=invert_masks).compressed())

    val_acc = classification_report(y_true, y_pred, output_dict=True)
    return val_acc 
开发者ID:megagonlabs,项目名称:sato,代码行数:32,代码来源:feature_importance.py


注:本文中的numpy.ma.array方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。