本文整理汇总了Python中numpy.ma.arange方法的典型用法代码示例。如果您正苦于以下问题:Python ma.arange方法的具体用法?Python ma.arange怎么用?Python ma.arange使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy.ma
的用法示例。
在下文中一共展示了ma.arange方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_sem
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import arange [as 别名]
def test_sem(self):
# example from stats.sem doc
a = np.arange(20).reshape(5,4)
am = np.ma.array(a)
r = stats.sem(a,ddof=1)
rm = stats.mstats.sem(am, ddof=1)
assert_allclose(r, 2.82842712, atol=1e-5)
assert_allclose(rm, 2.82842712, atol=1e-5)
for n in self.get_n():
x, y, xm, ym = self.generate_xy_sample(n)
assert_almost_equal(stats.mstats.sem(xm, axis=None, ddof=0),
stats.sem(x, axis=None, ddof=0), decimal=13)
assert_almost_equal(stats.mstats.sem(ym, axis=None, ddof=0),
stats.sem(y, axis=None, ddof=0), decimal=13)
assert_almost_equal(stats.mstats.sem(xm, axis=None, ddof=1),
stats.sem(x, axis=None, ddof=1), decimal=13)
assert_almost_equal(stats.mstats.sem(ym, axis=None, ddof=1),
stats.sem(y, axis=None, ddof=1), decimal=13)
示例2: test_hdmedian
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import arange [as 别名]
def test_hdmedian():
# 1-D array
x = ma.arange(11)
assert_allclose(ms.hdmedian(x), 5, rtol=1e-14)
x.mask = ma.make_mask(x)
x.mask[:7] = False
assert_allclose(ms.hdmedian(x), 3, rtol=1e-14)
# Check that `var` keyword returns a value. TODO: check whether returned
# value is actually correct.
assert_(ms.hdmedian(x, var=True).size == 2)
# 2-D array
x2 = ma.arange(22).reshape((11, 2))
assert_allclose(ms.hdmedian(x2, axis=0), [10, 11])
x2.mask = ma.make_mask(x2)
x2.mask[:7, :] = False
assert_allclose(ms.hdmedian(x2, axis=0), [6, 7])
示例3: sen_seasonal_slopes
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import arange [as 别名]
def sen_seasonal_slopes(x):
x = ma.array(x, subok=True, copy=False, ndmin=2)
(n,_) = x.shape
# Get list of slopes per season
szn_slopes = ma.vstack([(x[i+1:]-x[i])/np.arange(1,n-i)[:,None]
for i in range(n)])
szn_medslopes = ma.median(szn_slopes, axis=0)
medslope = ma.median(szn_slopes, axis=None)
return szn_medslopes, medslope
示例4: sen_seasonal_slopes
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import arange [as 别名]
def sen_seasonal_slopes(x):
x = ma.array(x, subok=True, copy=False, ndmin=2)
(n,_) = x.shape
# Get list of slopes per season
szn_slopes = ma.vstack([(x[i+1:]-x[i])/np.arange(1,n-i)[:,None]
for i in range(n)])
szn_medslopes = ma.median(szn_slopes, axis=0)
medslope = ma.median(szn_slopes, axis=None)
return szn_medslopes, medslope
#####--------------------------------------------------------------------------
#---- --- Inferential statistics ---
#####--------------------------------------------------------------------------
示例5: _kolmog1
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import arange [as 别名]
def _kolmog1(x,n):
if x <= 0:
return 0
if x >= 1:
return 1
j = np.arange(np.floor(n*(1-x))+1)
return 1 - x * np.sum(np.exp(np.log(misc.comb(n,j))
+ (n-j) * np.log(1-x-j/float(n))
+ (j-1) * np.log(x+j/float(n))))
示例6: test_trim
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import arange [as 别名]
def test_trim(self):
"Tests trimming"
a = ma.arange(10)
assert_equal(mstats.trim(a), [0,1,2,3,4,5,6,7,8,9])
a = ma.arange(10)
assert_equal(mstats.trim(a,(2,8)), [None,None,2,3,4,5,6,7,8,None])
a = ma.arange(10)
assert_equal(mstats.trim(a,limits=(2,8),inclusive=(False,False)),
[None,None,None,3,4,5,6,7,None,None])
a = ma.arange(10)
assert_equal(mstats.trim(a,limits=(0.1,0.2),relative=True),
[None,1,2,3,4,5,6,7,None,None])
#
a = ma.arange(12)
a[[0,-1]] = a[5] = masked
assert_equal(mstats.trim(a,(2,8)),
[None,None,2,3,4,None,6,7,8,None,None,None])
#
x = ma.arange(100).reshape(10,10)
trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=None)
assert_equal(trimx._mask.ravel(),[1]*10+[0]*70+[1]*20)
trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=0)
assert_equal(trimx._mask.ravel(),[1]*10+[0]*70+[1]*20)
trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=-1)
assert_equal(trimx._mask.T.ravel(),[1]*10+[0]*70+[1]*20)
#
x = ma.arange(110).reshape(11,10)
x[1] = masked
trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=None)
assert_equal(trimx._mask.ravel(),[1]*20+[0]*70+[1]*20)
trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=0)
assert_equal(trimx._mask.ravel(),[1]*20+[0]*70+[1]*20)
trimx = mstats.trim(x.T,(0.1,0.2),relative=True,axis=-1)
assert_equal(trimx.T._mask.ravel(),[1]*20+[0]*70+[1]*20)
示例7: test_trim_old
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import arange [as 别名]
def test_trim_old(self):
"Tests trimming."
x = ma.arange(100)
assert_equal(mstats.trimboth(x).count(), 60)
assert_equal(mstats.trimtail(x,tail='r').count(), 80)
x[50:70] = masked
trimx = mstats.trimboth(x)
assert_equal(trimx.count(), 48)
assert_equal(trimx._mask, [1]*16 + [0]*34 + [1]*20 + [0]*14 + [1]*16)
x._mask = nomask
x.shape = (10,10)
assert_equal(mstats.trimboth(x).count(), 60)
assert_equal(mstats.trimtail(x).count(), 80)
示例8: test_percentile
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import arange [as 别名]
def test_percentile(self):
x = np.arange(8) * 0.5
assert_equal(mstats.scoreatpercentile(x, 0), 0.)
assert_equal(mstats.scoreatpercentile(x, 100), 3.5)
assert_equal(mstats.scoreatpercentile(x, 50), 1.75)
示例9: test_plotting_positions
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import arange [as 别名]
def test_plotting_positions():
"""Regression test for #1256"""
pos = mstats.plotting_positions(np.arange(3), 0, 0)
assert_array_almost_equal(pos.data, np.array([0.25, 0.5, 0.75]))
示例10: test_kendalltau
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import arange [as 别名]
def test_kendalltau(self):
# Tests some computations of Kendall's tau
x = ma.fix_invalid([5.05, 6.75, 3.21, 2.66,np.nan])
y = ma.fix_invalid([1.65, 26.5, -5.93, 7.96, np.nan])
z = ma.fix_invalid([1.65, 2.64, 2.64, 6.95, np.nan])
assert_almost_equal(np.asarray(mstats.kendalltau(x,y)),
[+0.3333333,0.4969059])
assert_almost_equal(np.asarray(mstats.kendalltau(x,z)),
[-0.5477226,0.2785987])
#
x = ma.fix_invalid([0, 0, 0, 0,20,20, 0,60, 0,20,
10,10, 0,40, 0,20, 0, 0, 0, 0, 0, np.nan])
y = ma.fix_invalid([0,80,80,80,10,33,60, 0,67,27,
25,80,80,80,80,80,80, 0,10,45, np.nan, 0])
result = mstats.kendalltau(x,y)
assert_almost_equal(np.asarray(result), [-0.1585188, 0.4128009])
# make sure internal variable use correct precision with
# larger arrays
x = np.arange(2000, dtype=float)
x = ma.masked_greater(x, 1995)
y = np.arange(2000, dtype=float)
y = np.concatenate((y[1000:], y[:1000]))
assert_(np.isfinite(mstats.kendalltau(x,y)[1]))
# test for namedtuple attributes
res = mstats.kendalltau(x, y)
attributes = ('correlation', 'pvalue')
check_named_results(res, attributes, ma=True)
示例11: test_trim
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import arange [as 别名]
def test_trim(self):
a = ma.arange(10)
assert_equal(mstats.trim(a), [0,1,2,3,4,5,6,7,8,9])
a = ma.arange(10)
assert_equal(mstats.trim(a,(2,8)), [None,None,2,3,4,5,6,7,8,None])
a = ma.arange(10)
assert_equal(mstats.trim(a,limits=(2,8),inclusive=(False,False)),
[None,None,None,3,4,5,6,7,None,None])
a = ma.arange(10)
assert_equal(mstats.trim(a,limits=(0.1,0.2),relative=True),
[None,1,2,3,4,5,6,7,None,None])
a = ma.arange(12)
a[[0,-1]] = a[5] = masked
assert_equal(mstats.trim(a, (2,8)),
[None, None, 2, 3, 4, None, 6, 7, 8, None, None, None])
x = ma.arange(100).reshape(10, 10)
expected = [1]*10 + [0]*70 + [1]*20
trimx = mstats.trim(x, (0.1,0.2), relative=True, axis=None)
assert_equal(trimx._mask.ravel(), expected)
trimx = mstats.trim(x, (0.1,0.2), relative=True, axis=0)
assert_equal(trimx._mask.ravel(), expected)
trimx = mstats.trim(x, (0.1,0.2), relative=True, axis=-1)
assert_equal(trimx._mask.T.ravel(), expected)
# same as above, but with an extra masked row inserted
x = ma.arange(110).reshape(11, 10)
x[1] = masked
expected = [1]*20 + [0]*70 + [1]*20
trimx = mstats.trim(x, (0.1,0.2), relative=True, axis=None)
assert_equal(trimx._mask.ravel(), expected)
trimx = mstats.trim(x, (0.1,0.2), relative=True, axis=0)
assert_equal(trimx._mask.ravel(), expected)
trimx = mstats.trim(x.T, (0.1,0.2), relative=True, axis=-1)
assert_equal(trimx.T._mask.ravel(), expected)
示例12: test_trim_old
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import arange [as 别名]
def test_trim_old(self):
x = ma.arange(100)
assert_equal(mstats.trimboth(x).count(), 60)
assert_equal(mstats.trimtail(x,tail='r').count(), 80)
x[50:70] = masked
trimx = mstats.trimboth(x)
assert_equal(trimx.count(), 48)
assert_equal(trimx._mask, [1]*16 + [0]*34 + [1]*20 + [0]*14 + [1]*16)
x._mask = nomask
x.shape = (10,10)
assert_equal(mstats.trimboth(x).count(), 60)
assert_equal(mstats.trimtail(x).count(), 80)
示例13: test_plotting_positions
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import arange [as 别名]
def test_plotting_positions():
# Regression test for #1256
pos = mstats.plotting_positions(np.arange(3), 0, 0)
assert_array_almost_equal(pos.data, np.array([0.25, 0.5, 0.75]))
示例14: test_describe_result_attributes
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import arange [as 别名]
def test_describe_result_attributes(self):
actual = mstats.describe(np.arange(5))
attributes = ('nobs', 'minmax', 'mean', 'variance', 'skewness',
'kurtosis')
check_named_results(actual, attributes, ma=True)
示例15: test_trimboth
# 需要导入模块: from numpy import ma [as 别名]
# 或者: from numpy.ma import arange [as 别名]
def test_trimboth(self):
a = np.arange(20)
b = stats.trimboth(a, 0.1)
bm = stats.mstats.trimboth(a, 0.1)
assert_allclose(np.sort(b), bm.data[~bm.mask])