当前位置: 首页>>代码示例>>Python>>正文


Python linalg.solve方法代码示例

本文整理汇总了Python中numpy.linalg.solve方法的典型用法代码示例。如果您正苦于以下问题:Python linalg.solve方法的具体用法?Python linalg.solve怎么用?Python linalg.solve使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy.linalg的用法示例。


在下文中一共展示了linalg.solve方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: si_c2

# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import solve [as 别名]
def si_c2(self,ww):
    """
    This computes the correlation part of the screened interaction using LinearOpt and lgmres
    lgmres method is much slower than np.linalg.solve !!
    """
    import numpy as np
    from scipy.sparse.linalg import lgmres
    from scipy.sparse.linalg import LinearOperator
    rf0 = si0 = self.rf0(ww)    
    for iw,w in enumerate(ww):                                
      k_c = np.dot(self.kernel_sq, rf0[iw,:,:])                                         
      b = np.dot(k_c, self.kernel_sq)               
      self.comega_current = w
      k_c_opt = LinearOperator((self.nprod,self.nprod), matvec=self.gw_vext2veffmatvec, dtype=self.dtypeComplex)  
      for m in range(self.nprod): 
         si0[iw,m,:],exitCode = lgmres(k_c_opt, b[m,:], atol=self.gw_iter_tol, maxiter=self.maxiter)   
      if exitCode != 0: print("LGMRES has not achieved convergence: exitCode = {}".format(exitCode))
      #np.allclose(np.dot(k_c, si0), b, atol=1e-05) == True  #Test   
    return si0 
开发者ID:pyscf,项目名称:pyscf,代码行数:21,代码来源:gw_iter.py

示例2: si_c_check

# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import solve [as 别名]
def si_c_check (self, tol = 1e-5):
    """
    This compares np.solve and LinearOpt-lgmres methods for solving linear equation (1-v\chi_{0}) * W_c = v\chi_{0}v
    """
    import time
    import numpy as np
    ww = 1j*self.ww_ia
    t = time.time()
    si0_1 = self.si_c(ww)      #method 1:  numpy.linalg.solve
    t1 = time.time() - t
    print('numpy: {} sec'.format(t1))
    t2 = time.time()
    si0_2 = self.si_c2(ww)     #method 2:  scipy.sparse.linalg.lgmres
    t3 = time.time() - t2
    print('lgmres: {} sec'.format(t3))
    summ = abs(si0_1 + si0_2).sum()
    diff = abs(si0_1 - si0_2).sum() 
    if diff/summ < tol and diff/si0_1.size < tol:
       print('OK! scipy.lgmres methods and np.linalg.solve have identical results')
    else:
       print('Results (W_c) are NOT similar!')     
    return [[diff/summ] , [np.amax(abs(diff))] ,[tol]]

  #@profile 
开发者ID:pyscf,项目名称:pyscf,代码行数:26,代码来源:gw_iter.py

示例3: getBarycentricCoords

# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import solve [as 别名]
def getBarycentricCoords(A, B, C, X, checkValidity = True):
    T = np.array( [ [A.x - C.x, B.x - C.x ], [A.y - C.y, B.y - C.y] ] )
    y = np.array( [ [X.x - C.x], [X.y - C.y] ] )
    lambdas = linalg.solve(T, y)
    lambdas = lambdas.flatten()
    lambdas = np.append(lambdas, 1 - (lambdas[0] + lambdas[1]))
    if checkValidity:
        if (lambdas[0] < 0 or lambdas[1] < 0 or lambdas[2] < 0):
            print "ERROR: Not a convex combination; lambda = %s"%lambdas
            print "pointInsideConvexPolygon2D = %s"%pointInsideConvexPolygon2D([A, B, C], X, 0)
            plt.plot([A.x, B.x, C.x, A.x], [A.y, B.y, C.y, A.y], 'r')
            plt.hold(True)
            plt.plot([X.x], [X.y], 'b.')
            plt.show()
        assert (lambdas[0] >= 0 and lambdas[1] >= 0 and lambdas[2] >= 0)
    else:
        lambdas[0] = max(lambdas[0], 0)
        lambdas[1] = max(lambdas[1], 0)
        lambdas[2] = max(lambdas[2], 0)
    return lambdas 
开发者ID:bmershon,项目名称:laplacian-meshes,代码行数:22,代码来源:Utilities2D.py

示例4: test_0_size_k

# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import solve [as 别名]
def test_0_size_k(self):
        # test zero multiple equation (K=0) case.
        class ArraySubclass(np.ndarray):
            pass
        a = np.arange(4).reshape(1, 2, 2)
        b = np.arange(6).reshape(3, 2, 1).view(ArraySubclass)

        expected = linalg.solve(a, b)[:, :, 0:0]
        result = linalg.solve(a, b[:, :, 0:0])
        assert_array_equal(result, expected)
        assert_(isinstance(result, ArraySubclass))

        # test both zero.
        expected = linalg.solve(a, b)[:, 0:0, 0:0]
        result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, 0:0])
        assert_array_equal(result, expected)
        assert_(isinstance(result, ArraySubclass)) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:19,代码来源:test_linalg.py

示例5: test_0_size_k

# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import solve [as 别名]
def test_0_size_k(self):
        # test zero multiple equation (K=0) case.
        class ArraySubclass(np.ndarray):
            pass
        a = np.arange(4).reshape(1, 2, 2)
        b = np.arange(6).reshape(3, 2, 1).view(ArraySubclass)

        expected = linalg.solve(a, b)[:,:, 0:0]
        result = linalg.solve(a, b[:,:, 0:0])
        assert_array_equal(result, expected)
        assert_(isinstance(result, ArraySubclass))

        # test both zero.
        expected = linalg.solve(a, b)[:, 0:0, 0:0]
        result = linalg.solve(a[:, 0:0, 0:0], b[:,0:0, 0:0])
        assert_array_equal(result, expected)
        assert_(isinstance(result, ArraySubclass)) 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:19,代码来源:test_linalg.py

示例6: solve

# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import solve [as 别名]
def solve(self):
        # known and unknown values
        self.VU = [node[key] for node in self.U.values() for key in ("ux",)]
        self.VF = [node[key] for node in self.F.values() for key in ("fx",)]
        knw = [pos for pos,value in enumerate(self.VU) if not value is np.nan]
        unknw = [pos for pos,value in enumerate(self.VU) if value is np.nan]
        # Matrices to solve
        self.K2S = np.delete(np.delete(self.KG,knw,0),knw,1)
        self.F2S = np.delete(self.VF,knw,0)
        # For displacements
        self.solved_u = la.solve(self.K2S,self.F2S)
        # Updating U (displacements vector)
        for k,ic in enumerate(unknw):
            nd, var = self.index2key(ic)
            self.U[nd][var] = self.solved_u[k]
            self.nodes[ic].ux = self.solved_u[k]
        # For nodal forces/reactions
        self.NF = self.F.copy()
        self.VU = [node[key] for node in self.U.values() for key in ("ux",)]
        nf_calc = np.dot(self.KG, self.VU)
        for k,ic in enumerate(range(self.get_number_of_nodes())):
            nd, var = self.index2key(ic, ("fx",))
            self.NF[nd][var] = nf_calc[k]
            self.nodes[ic].fx = nf_calc[k] 
开发者ID:JorgeDeLosSantos,项目名称:nusa,代码行数:26,代码来源:model.py

示例7: _single_sample_update

# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import solve [as 别名]
def _single_sample_update(self, X, i, w):
        n_features = X.shape[1]
        if X.indptr[i + 1] - X.indptr[i] != 0:
            X_subset = X.data[X.indptr[i]:X.indptr[i + 1]]
            subset = X.indices[X.indptr[i]:X.indptr[i + 1]]
            len_subset = subset.shape[0]
            reduction = n_features / len_subset
            self.feature_n_iter_[subset] += 1
            components_subset = self.components_[:, subset]
            Dx = components_subset.dot(X_subset)
            G = components_subset.dot(components_subset.T)
            G.flat[::self.n_components + 1] += self.alpha / reduction
            self.code_[i] = linalg.solve(G, Dx)
            code = self.code_[i]
            w_B = np.minimum(1,
                             w * self.n_iter_ / self.feature_n_iter_[subset])
            self.B_[:, subset] *= 1 - w_B
            self.B_[:, subset] += np.outer(code, X_subset * w_B) 
开发者ID:arthurmensch,项目名称:modl,代码行数:20,代码来源:recsys.py

示例8: enet_regression_multi_gram_

# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import solve [as 别名]
def enet_regression_multi_gram_(G, Dx, X, code, l1_ratio, alpha,
                                positive):
    batch_size = code.shape[0]
    if l1_ratio == 0:
        n_components = G.shape[1]
        for i in range(batch_size):
            G.flat[::n_components + 1] += alpha
            code[i] = linalg.solve(G[i], Dx[i])
            G.flat[::n_components + 1] -= alpha
    else:
        # Unused but unfortunate API
        random_state = check_random_state(0)
        for i in range(batch_size):
            cd_fast.enet_coordinate_descent_gram(
                code[i],
                alpha * l1_ratio,
                alpha * (
                    1 - l1_ratio),
                G[i], Dx[i], X[i], 100, 1e-2,
                random_state,
                False, positive)
    return code 
开发者ID:arthurmensch,项目名称:modl,代码行数:24,代码来源:test_dict_fact.py

示例9: enet_regression_single_gram_

# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import solve [as 别名]
def enet_regression_single_gram_(G, Dx, X, code, code_l1_ratio, code_alpha,
                                 code_pos):
    batch_size = code.shape[0]
    if code_l1_ratio == 0:
        n_components = G.shape[0]
        G = G.copy()
        G.flat[::n_components + 1] += code_alpha
        code[:] = linalg.solve(G, Dx.T).T
        G.flat[::n_components + 1] -= code_alpha
    else:
        # Unused but unfortunate API
        random_state = check_random_state(0)
        for i in range(batch_size):
            cd_fast.enet_coordinate_descent_gram(
                code[i],
                code_alpha * code_l1_ratio,
                code_alpha * (
                    1 - code_l1_ratio),
                G, Dx[i], X[i], 100, 1e-2,
                random_state,
                False, code_pos)
    return code 
开发者ID:arthurmensch,项目名称:modl,代码行数:24,代码来源:test_dict_fact.py

示例10: find_line_intersection

# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import solve [as 别名]
def find_line_intersection(r1, angle1, r2, angle2):
    """
    Find intersection between two lines defined by point and direction.

    :param r1: Origin of the first line.
    :param angle1: Angle of the first line.
    :param r2: Origin of the second line.
    :param angle2: Angle of the second line.
    :return: Tuple of point of intersection and distances from the origins.
    :rtype: tuple
    """
    u1 = np.array([np.cos(angle1), np.sin(angle1)])
    u2 = np.array([np.cos(angle2), np.sin(angle2)])

    a = np.array([[u1[0], -u2[0]], [u1[1], -u2[1]]])
    b = r2 - r1

    # noinspection PyTypeChecker
    x = linalg.solve(a, b)
    return r1 + u1 * x[0], x 
开发者ID:HelgeGehring,项目名称:gdshelpers,代码行数:22,代码来源:small.py

示例11: MakeIaosRaw

# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import solve [as 别名]
def MakeIaosRaw(COcc, S1, S2, S12):
    # calculate the molecule-intrinsic atomic orbital (IAO) basis
    # ref: [1] Knizia, J. Chem. Theory Comput., http://dx.doi.org/10.1021/ct400687b
    # This is the "Simple/2014" version from ibo-ref at sites.psu.edu/knizia/software
    assert(S1.shape[0] == S1.shape[1] and S1.shape[0] == S12.shape[0])
    assert(S2.shape[0] == S2.shape[1] and S2.shape[0] == S12.shape[1])
    assert(COcc.shape[0] == S1.shape[0] and COcc.shape[1] <= S2.shape[0])
    P12 = la.solve(S1, S12)   # P12 = S1^{-1} S12
    COcc2 = mdot(S12.T, COcc)              # O(N m^2)
    CTil = la.solve(S2, COcc2)             # O(m^3)
    STil = mdot(COcc2.T, CTil)             # O(m^3)
    CTil2Bar = la.solve(STil, CTil.T).T    # O(m^3)
    T4 = COcc - mdot(P12, CTil2Bar)        # O(N m^2)
    CIb = P12 + mdot(T4, COcc2.T)          # O(N m^2)
    return CIb 
开发者ID:pyscf,项目名称:pyscf,代码行数:17,代码来源:PiOS.py

示例12: horner

# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import solve [as 别名]
def horner(self, s):
        """Evaluate the systems's transfer function for a complex variable

        Returns a matrix of values evaluated at complex variable s.
        """
        resp = np.dot(self.C, solve(s * eye(self.states) - self.A,
                                    self.B)) + self.D
        return array(resp)

    # Method for generating the frequency response of the system 
开发者ID:python-control,项目名称:python-control,代码行数:12,代码来源:statesp.py

示例13: dcgain

# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import solve [as 别名]
def dcgain(self):
        """Return the zero-frequency gain

        The zero-frequency gain of a continuous-time state-space
        system is given by:

        .. math: G(0) = - C A^{-1} B + D

        and of a discrete-time state-space system by:

        .. math: G(1) = C (I - A)^{-1} B + D

        Returns
        -------
        gain : ndarray
            An array of shape (outputs,inputs); the array will either
            be the zero-frequency (or DC) gain, or, if the frequency
            response is singular, the array will be filled with np.nan.
        """
        try:
            if self.isctime():
                gain = np.asarray(self.D-self.C.dot(np.linalg.solve(self.A, self.B)))
            else:
                gain = self.horner(1)
        except LinAlgError:
            # eigenvalue at DC
            gain = np.tile(np.nan, (self.outputs, self.inputs))
        return np.squeeze(gain)


# TODO: add discrete time check 
开发者ID:python-control,项目名称:python-control,代码行数:33,代码来源:statesp.py

示例14: do

# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import solve [as 别名]
def do(self, a, b, tags):
        x = linalg.solve(a, b)
        assert_almost_equal(b, dot_generalized(a, x))
        assert_(consistent_subclass(x, b)) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:6,代码来源:test_linalg.py

示例15: test_types

# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import solve [as 别名]
def test_types(self, dtype):
        x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
        assert_equal(linalg.solve(x, x).dtype, dtype) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:5,代码来源:test_linalg.py


注:本文中的numpy.linalg.solve方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。