本文整理汇总了Python中numpy.linalg.slogdet方法的典型用法代码示例。如果您正苦于以下问题:Python linalg.slogdet方法的具体用法?Python linalg.slogdet怎么用?Python linalg.slogdet使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy.linalg
的用法示例。
在下文中一共展示了linalg.slogdet方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: do
# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import slogdet [as 别名]
def do(self, a, b, tags):
d = linalg.det(a)
(s, ld) = linalg.slogdet(a)
if asarray(a).dtype.type in (single, double):
ad = asarray(a).astype(double)
else:
ad = asarray(a).astype(cdouble)
ev = linalg.eigvals(ad)
assert_almost_equal(d, multiply.reduce(ev, axis=-1))
assert_almost_equal(s * np.exp(ld), multiply.reduce(ev, axis=-1))
s = np.atleast_1d(s)
ld = np.atleast_1d(ld)
m = (s != 0)
assert_almost_equal(np.abs(s[m]), 1)
assert_equal(ld[~m], -inf)
示例2: do
# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import slogdet [as 别名]
def do(self, a, b):
d = linalg.det(a)
(s, ld) = linalg.slogdet(a)
if asarray(a).dtype.type in (single, double):
ad = asarray(a).astype(double)
else:
ad = asarray(a).astype(cdouble)
ev = linalg.eigvals(ad)
assert_almost_equal(d, multiply.reduce(ev, axis=-1))
assert_almost_equal(s * np.exp(ld), multiply.reduce(ev, axis=-1))
s = np.atleast_1d(s)
ld = np.atleast_1d(ld)
m = (s != 0)
assert_almost_equal(np.abs(s[m]), 1)
assert_equal(ld[~m], -inf)
示例3: test_0_size
# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import slogdet [as 别名]
def test_0_size(self):
a = np.zeros((0, 0), dtype=np.complex64)
res = linalg.det(a)
assert_equal(res, 1.)
assert_(res.dtype.type is np.complex64)
res = linalg.slogdet(a)
assert_equal(res, (1, 0))
assert_(res[0].dtype.type is np.complex64)
assert_(res[1].dtype.type is np.float32)
a = np.zeros((0, 0), dtype=np.float64)
res = linalg.det(a)
assert_equal(res, 1.)
assert_(res.dtype.type is np.float64)
res = linalg.slogdet(a)
assert_equal(res, (1, 0))
assert_(res[0].dtype.type is np.float64)
assert_(res[1].dtype.type is np.float64)
示例4: initialize
# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import slogdet [as 别名]
def initialize(self):
""" Initialize members for faster scoring. """
self.ct = self.cw + self.cb
self.p = inv(self.ct * 0.5) - inv(0.5 * self.cw + self.cb)
self.q = inv(2 * self.cw) - inv(2 * self.ct)
k1 = reduce(operator.mul, slogdet(0.5 * self.ct))
k2 = reduce(operator.mul, slogdet(0.5 * self.cw + self.cb))
k3 = reduce(operator.mul, slogdet(2 * self.ct))
k4 = reduce(operator.mul, slogdet(2 * self.cw))
self.k = 0.5 * (k1 - k2 + k3 - k4)
self.r = 0.5 * (0.25 * self.p - self.q)
self.s = 0.5 * (0.25 * self.p + self.q)
self.t = 0.25 * np.dot(self.p, self.mean.T)
u1 = 2 * np.dot(self.mean, 0.25 * self.p)
self.u = self.k + np.dot(u1, self.mean.T)
self.initialized = True
示例5: error
# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import slogdet [as 别名]
def error(self, start, end):
"""Return the approximation cost on the segment [start:end].
Args:
start (int): start of the segment
end (int): end of the segment
Returns:
float: segment cost
Raises:
NotEnoughPoints: when the segment is too short (less than ``'min_size'`` samples).
"""
if end - start < self.min_size:
raise NotEnoughPoints
sub = self.signal[start:end]
if self.signal.shape[1] > 1:
cov = np.cov(sub.T)
else:
cov = np.array([[sub.var()]])
_, val = slogdet(cov)
return val * (end - start)
示例6: orientation
# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import slogdet [as 别名]
def orientation(face, origin):
"""Compute the orientation of the face with respect to a point, origin.
Parameters
----------
face : array-like, of shape (N-dim, N-dim)
The hyperplane we want to know the orientation of
Do notice that the order in which you provide the points is critical
origin : array-like, point of shape (N-dim)
The point to compute the orientation from
Returns
-------
0 if the origin lies in the same hyperplane as face,
-1 or 1 to indicate left or right orientation
If two points lie on the same side of the face, the orientation will
be equal, if they lie on the other side of the face, it will be negated.
"""
vectors = array(face)
sign, logdet = slogdet(vectors - origin)
if logdet < -50: # assume it to be zero when it's close to zero
return 0
return sign
示例7: test_zero
# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import slogdet [as 别名]
def test_zero(self):
assert_equal(linalg.det([[0.0]]), 0.0)
assert_equal(type(linalg.det([[0.0]])), double)
assert_equal(linalg.det([[0.0j]]), 0.0)
assert_equal(type(linalg.det([[0.0j]])), cdouble)
assert_equal(linalg.slogdet([[0.0]]), (0.0, -inf))
assert_equal(type(linalg.slogdet([[0.0]])[0]), double)
assert_equal(type(linalg.slogdet([[0.0]])[1]), double)
assert_equal(linalg.slogdet([[0.0j]]), (0.0j, -inf))
assert_equal(type(linalg.slogdet([[0.0j]])[0]), cdouble)
assert_equal(type(linalg.slogdet([[0.0j]])[1]), double)