本文整理汇总了Python中numpy.linalg.det方法的典型用法代码示例。如果您正苦于以下问题:Python linalg.det方法的具体用法?Python linalg.det怎么用?Python linalg.det使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy.linalg
的用法示例。
在下文中一共展示了linalg.det方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: do
# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import det [as 别名]
def do(self, a, b, tags):
d = linalg.det(a)
(s, ld) = linalg.slogdet(a)
if asarray(a).dtype.type in (single, double):
ad = asarray(a).astype(double)
else:
ad = asarray(a).astype(cdouble)
ev = linalg.eigvals(ad)
assert_almost_equal(d, multiply.reduce(ev, axis=-1))
assert_almost_equal(s * np.exp(ld), multiply.reduce(ev, axis=-1))
s = np.atleast_1d(s)
ld = np.atleast_1d(ld)
m = (s != 0)
assert_almost_equal(np.abs(s[m]), 1)
assert_equal(ld[~m], -inf)
示例2: test_byteorder_check
# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import det [as 别名]
def test_byteorder_check():
# Byte order check should pass for native order
if sys.byteorder == 'little':
native = '<'
else:
native = '>'
for dtt in (np.float32, np.float64):
arr = np.eye(4, dtype=dtt)
n_arr = arr.newbyteorder(native)
sw_arr = arr.newbyteorder('S').byteswap()
assert_equal(arr.dtype.byteorder, '=')
for routine in (linalg.inv, linalg.det, linalg.pinv):
# Normal call
res = routine(arr)
# Native but not '='
assert_array_equal(res, routine(n_arr))
# Swapped
assert_array_equal(res, routine(sw_arr))
示例3: do
# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import det [as 别名]
def do(self, a, b):
d = linalg.det(a)
(s, ld) = linalg.slogdet(a)
if asarray(a).dtype.type in (single, double):
ad = asarray(a).astype(double)
else:
ad = asarray(a).astype(cdouble)
ev = linalg.eigvals(ad)
assert_almost_equal(d, multiply.reduce(ev, axis=-1))
assert_almost_equal(s * np.exp(ld), multiply.reduce(ev, axis=-1))
s = np.atleast_1d(s)
ld = np.atleast_1d(ld)
m = (s != 0)
assert_almost_equal(np.abs(s[m]), 1)
assert_equal(ld[~m], -inf)
示例4: test_0_size
# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import det [as 别名]
def test_0_size(self):
a = np.zeros((0, 0), dtype=np.complex64)
res = linalg.det(a)
assert_equal(res, 1.)
assert_(res.dtype.type is np.complex64)
res = linalg.slogdet(a)
assert_equal(res, (1, 0))
assert_(res[0].dtype.type is np.complex64)
assert_(res[1].dtype.type is np.float32)
a = np.zeros((0, 0), dtype=np.float64)
res = linalg.det(a)
assert_equal(res, 1.)
assert_(res.dtype.type is np.float64)
res = linalg.slogdet(a)
assert_equal(res, (1, 0))
assert_(res[0].dtype.type is np.float64)
assert_(res[1].dtype.type is np.float64)
示例5: logL
# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import det [as 别名]
def logL(self, a, ML=False):
"""
Individual contributions to the log-likelihood, tries to return REML
contribution by default though this requires estimated
fixed effect a to be passed as an argument.
no constant with pi included
a is not used if ML=true (should be a=None in signature)
If ML is false, then the residuals are calculated for the given fixed
effects parameters a.
"""
if ML:
return (np.log(L.det(self.W)) - (self.r * np.dot(self.W, self.r)).sum()) / 2.
else:
if a is None:
raise ValueError('need fixed effect a for REML contribution to log-likelihood')
r = self.Y - np.dot(self.X, a)
return (np.log(L.det(self.W)) - (r * np.dot(self.W, r)).sum()) / 2.
示例6: multi_gaussian
# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import det [as 别名]
def multi_gaussian(X, mu, sigma):
"""Estimates probability that examples belong to Multivariate Gaussian.
Args:
X (numpy.array): Features' dataset.
mu (numpy.array): Mean of each feature/column of X.
sigma (numpy.array): Covariance matrix for X.
Returns:
numpy.array: Probability density function for each example
"""
m, n = X.shape
X = X - mu
factor = X.dot(inv(sigma))
factor = multiply(factor, X)
factor = - (1 / 2) * sum(factor, axis=1, keepdims=True)
p = 1 / (power(2 * pi, n / 2) * sqrt(det(sigma)))
p = p * exp(factor)
return p
示例7: __call__
# 需要导入模块: from numpy import linalg [as 别名]
# 或者: from numpy.linalg import det [as 别名]
def __call__(self, params):
print '???', params
sd1 = params[0]
sd2 = params[1]
cor = params[2]
if sd1 < 0. or sd1 > 10. or sd2 < 0. or sd2 > 10. or cor < -1. or cor > 1.:
return np.inf
bandwidth = maths.stats.choleskysqrt2d(sd1, sd2, cor)
bandwidthdet = la.det(bandwidth)
bandwidthinv = la.inv(bandwidth)
diff = sample[self.__iidx] - sample[self.__jidx]
temp = diff.dot(bandwidthinv.T)
temp *= temp
e = np.exp(np.sum(temp, axis=1))
s = np.sum(e**(-.25) - 4 * e**(-.5))
cost = self.__n / bandwidthdet + (2. / bandwidthdet) * s
print '!!!', cost
return cost / 10000.