当前位置: 首页>>代码示例>>Python>>正文


Python _umath_linalg.slogdet方法代码示例

本文整理汇总了Python中numpy.linalg._umath_linalg.slogdet方法的典型用法代码示例。如果您正苦于以下问题:Python _umath_linalg.slogdet方法的具体用法?Python _umath_linalg.slogdet怎么用?Python _umath_linalg.slogdet使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy.linalg._umath_linalg的用法示例。


在下文中一共展示了_umath_linalg.slogdet方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: det

# 需要导入模块: from numpy.linalg import _umath_linalg [as 别名]
# 或者: from numpy.linalg._umath_linalg import slogdet [as 别名]
def det(a):
    """
    Compute the determinant of an array.

    Parameters
    ----------
    a : (..., M, M) array_like
        Input array to compute determinants for.

    Returns
    -------
    det : (...) array_like
        Determinant of `a`.

    See Also
    --------
    slogdet : Another way to represent the determinant, more suitable
      for large matrices where underflow/overflow may occur.

    Notes
    -----

    .. versionadded:: 1.8.0

    Broadcasting rules apply, see the `numpy.linalg` documentation for
    details.

    The determinant is computed via LU factorization using the LAPACK
    routine z/dgetrf.

    Examples
    --------
    The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:

    >>> a = np.array([[1, 2], [3, 4]])
    >>> np.linalg.det(a)
    -2.0

    Computing determinants for a stack of matrices:

    >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ])
    >>> a.shape
    (3, 2, 2)
    >>> np.linalg.det(a)
    array([-2., -3., -8.])

    """
    a = asarray(a)
    _assertRankAtLeast2(a)
    _assertNdSquareness(a)
    t, result_t = _commonType(a)
    signature = 'D->D' if isComplexType(t) else 'd->d'
    r = _umath_linalg.det(a, signature=signature)
    r = r.astype(result_t, copy=False)
    return r


# Linear Least Squares 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:60,代码来源:linalg.py

示例2: det

# 需要导入模块: from numpy.linalg import _umath_linalg [as 别名]
# 或者: from numpy.linalg._umath_linalg import slogdet [as 别名]
def det(a):
    """
    Compute the determinant of an array.

    Parameters
    ----------
    a : (..., M, M) array_like
        Input array to compute determinants for.

    Returns
    -------
    det : (...) array_like
        Determinant of `a`.

    See Also
    --------
    slogdet : Another way to represent the determinant, more suitable
      for large matrices where underflow/overflow may occur.

    Notes
    -----

    .. versionadded:: 1.8.0

    Broadcasting rules apply, see the `numpy.linalg` documentation for
    details.

    The determinant is computed via LU factorization using the LAPACK
    routine z/dgetrf.

    Examples
    --------
    The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:

    >>> a = np.array([[1, 2], [3, 4]])
    >>> np.linalg.det(a)
    -2.0

    Computing determinants for a stack of matrices:

    >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ])
    >>> a.shape
    (3, 2, 2)
    >>> np.linalg.det(a)
    array([-2., -3., -8.])

    """
    a = asarray(a)
    _assertRankAtLeast2(a)
    _assertNdSquareness(a)
    t, result_t = _commonType(a)
    signature = 'D->D' if isComplexType(t) else 'd->d'
    r = _umath_linalg.det(a, signature=signature)
    r = r.astype(result_t, copy=False)
    return r

# Linear Least Squares 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:59,代码来源:linalg.py

示例3: det

# 需要导入模块: from numpy.linalg import _umath_linalg [as 别名]
# 或者: from numpy.linalg._umath_linalg import slogdet [as 别名]
def det(a):
    """
    Compute the determinant of an array.

    Parameters
    ----------
    a : (..., M, M) array_like
        Input array to compute determinants for.

    Returns
    -------
    det : (...) array_like
        Determinant of `a`.

    See Also
    --------
    slogdet : Another way to representing the determinant, more suitable
      for large matrices where underflow/overflow may occur.

    Notes
    -----

    .. versionadded:: 1.8.0

    Broadcasting rules apply, see the `numpy.linalg` documentation for
    details.

    The determinant is computed via LU factorization using the LAPACK
    routine z/dgetrf.

    Examples
    --------
    The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:

    >>> a = np.array([[1, 2], [3, 4]])
    >>> np.linalg.det(a)
    -2.0

    Computing determinants for a stack of matrices:

    >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ])
    >>> a.shape
    (3, 2, 2)
    >>> np.linalg.det(a)
    array([-2., -3., -8.])

    """
    a = asarray(a)
    _assertNoEmpty2d(a)
    _assertRankAtLeast2(a)
    _assertNdSquareness(a)
    t, result_t = _commonType(a)
    signature = 'D->D' if isComplexType(t) else 'd->d'
    r = _umath_linalg.det(a, signature=signature)
    if isscalar(r):
        r = r.astype(result_t)
    else:
        r = r.astype(result_t, copy=False)
    return r

# Linear Least Squares 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:63,代码来源:linalg.py

示例4: det

# 需要导入模块: from numpy.linalg import _umath_linalg [as 别名]
# 或者: from numpy.linalg._umath_linalg import slogdet [as 别名]
def det(a):
    """
    Compute the determinant of an array.

    Parameters
    ----------
    a : (..., M, M) array_like
        Input array to compute determinants for.

    Returns
    -------
    det : (...) array_like
        Determinant of `a`.

    See Also
    --------
    slogdet : Another way to representing the determinant, more suitable
      for large matrices where underflow/overflow may occur.

    Notes
    -----

    .. versionadded:: 1.8.0

    Broadcasting rules apply, see the `numpy.linalg` documentation for
    details.

    The determinant is computed via LU factorization using the LAPACK
    routine z/dgetrf.

    Examples
    --------
    The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:

    >>> a = np.array([[1, 2], [3, 4]])
    >>> np.linalg.det(a)
    -2.0

    Computing determinants for a stack of matrices:

    >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ])
    >>> a.shape
    (3, 2, 2)
    >>> np.linalg.det(a)
    array([-2., -3., -8.])

    """
    a = asarray(a)
    _assertRankAtLeast2(a)
    _assertNdSquareness(a)
    t, result_t = _commonType(a)
    signature = 'D->D' if isComplexType(t) else 'd->d'
    r = _umath_linalg.det(a, signature=signature)
    r = r.astype(result_t, copy=False)
    return r

# Linear Least Squares 
开发者ID:birforce,项目名称:vnpy_crypto,代码行数:59,代码来源:linalg.py

示例5: det

# 需要导入模块: from numpy.linalg import _umath_linalg [as 别名]
# 或者: from numpy.linalg._umath_linalg import slogdet [as 别名]
def det(a):
    """
    Compute the determinant of an array.

    Parameters
    ----------
    a : (..., M, M) array_like
        Input array to compute determinants for.

    Returns
    -------
    det : (...) array_like
        Determinant of `a`.

    See Also
    --------
    slogdet : Another way to representing the determinant, more suitable
      for large matrices where underflow/overflow may occur.

    Notes
    -----
    Broadcasting rules apply, see the `numpy.linalg` documentation for
    details.

    The determinant is computed via LU factorization using the LAPACK
    routine z/dgetrf.

    Examples
    --------
    The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:

    >>> a = np.array([[1, 2], [3, 4]])
    >>> np.linalg.det(a)
    -2.0

    Computing determinants for a stack of matrices:

    >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ])
    >>> a.shape
    (2, 2, 2
    >>> np.linalg.det(a)
    array([-2., -3., -8.])

    """
    a = asarray(a)
    _assertNoEmpty2d(a)
    _assertRankAtLeast2(a)
    _assertNdSquareness(a)
    t, result_t = _commonType(a)
    signature = 'D->D' if isComplexType(t) else 'd->d'
    return _umath_linalg.det(a, signature=signature).astype(result_t)

# Linear Least Squares 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:55,代码来源:linalg.py

示例6: det

# 需要导入模块: from numpy.linalg import _umath_linalg [as 别名]
# 或者: from numpy.linalg._umath_linalg import slogdet [as 别名]
def det(a):
    """
    Compute the determinant of an array.

    Parameters
    ----------
    a : (..., M, M) array_like
        Input array to compute determinants for.

    Returns
    -------
    det : (...) array_like
        Determinant of `a`.

    See Also
    --------
    slogdet : Another way to representing the determinant, more suitable
      for large matrices where underflow/overflow may occur.

    Notes
    -----

    .. versionadded:: 1.8.0

    Broadcasting rules apply, see the `numpy.linalg` documentation for
    details.

    The determinant is computed via LU factorization using the LAPACK
    routine z/dgetrf.

    Examples
    --------
    The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:

    >>> a = np.array([[1, 2], [3, 4]])
    >>> np.linalg.det(a)
    -2.0

    Computing determinants for a stack of matrices:

    >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ])
    >>> a.shape
    (3, 2, 2)
    >>> np.linalg.det(a)
    array([-2., -3., -8.])

    """
    a = asarray(a)
    _assertRankAtLeast2(a)
    _assertNdSquareness(a)
    t, result_t = _commonType(a)
    signature = 'D->D' if isComplexType(t) else 'd->d'
    r = _umath_linalg.det(a, signature=signature)
    if isscalar(r):
        r = r.astype(result_t)
    else:
        r = r.astype(result_t, copy=False)
    return r

# Linear Least Squares 
开发者ID:awslabs,项目名称:mxnet-lambda,代码行数:62,代码来源:linalg.py


注:本文中的numpy.linalg._umath_linalg.slogdet方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。