当前位置: 首页>>代码示例>>Python>>正文


Python format.open_memmap方法代码示例

本文整理汇总了Python中numpy.lib.format.open_memmap方法的典型用法代码示例。如果您正苦于以下问题:Python format.open_memmap方法的具体用法?Python format.open_memmap怎么用?Python format.open_memmap使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy.lib.format的用法示例。


在下文中一共展示了format.open_memmap方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_version_2_0_memmap

# 需要导入模块: from numpy.lib import format [as 别名]
# 或者: from numpy.lib.format import open_memmap [as 别名]
def test_version_2_0_memmap():
    # requires more than 2 byte for header
    dt = [(("%d" % i) * 100, float) for i in range(500)]
    d = np.ones(1000, dtype=dt)
    tf = tempfile.mktemp('', 'mmap', dir=tempdir)

    # 1.0 requested but data cannot be saved this way
    assert_raises(ValueError, format.open_memmap, tf, mode='w+', dtype=d.dtype,
                            shape=d.shape, version=(1, 0))

    ma = format.open_memmap(tf, mode='w+', dtype=d.dtype,
                            shape=d.shape, version=(2, 0))
    ma[...] = d
    del ma

    with warnings.catch_warnings(record=True) as w:
        warnings.filterwarnings('always', '', UserWarning)
        ma = format.open_memmap(tf, mode='w+', dtype=d.dtype,
                                shape=d.shape, version=None)
        assert_(w[0].category is UserWarning)
        ma[...] = d
        del ma

    ma = format.open_memmap(tf, mode='r')
    assert_array_equal(ma, d) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:27,代码来源:test_format.py

示例2: load_samples

# 需要导入模块: from numpy.lib import format [as 别名]
# 或者: from numpy.lib.format import open_memmap [as 别名]
def load_samples(data_folder, mode='r'):
    """Load sampled results as a dictionary of numpy memmap.

    Args:
        data_folder (str): the folder from which to use the samples
        mode (str): the mode in which to open the memory mapped sample files (see numpy mode parameter)

    Returns:
        dict: the memory loaded samples per sampled parameter.
    """
    data_dict = {}
    for fname in glob.glob(os.path.join(data_folder, '*.samples.npy')):
        samples = open_memmap(fname, mode=mode)
        map_name = os.path.basename(fname)[0:-len('.samples.npy')]
        data_dict.update({map_name: samples})
    return data_dict 
开发者ID:robbert-harms,项目名称:MDT,代码行数:18,代码来源:utils.py

示例3: load_sample

# 需要导入模块: from numpy.lib import format [as 别名]
# 或者: from numpy.lib.format import open_memmap [as 别名]
def load_sample(fname, mode='r'):
    """Load an matrix of samples from a ``.samples.npy`` file.

    This will open the samples as a numpy memory mapped array.

    Args:
        fname (str): the name of the file to load, suffix of ``.samples.npy`` is not required.
        mode (str): the mode in which to open the memory mapped sample files (see numpy mode parameter)

    Returns:
        ndarray: a memory mapped array with the results
    """
    if not os.path.isfile(fname) and not os.path.isfile(fname + '.samples.npy'):
        raise ValueError('Could not find sample results at the location "{}"'.format(fname))

    if not os.path.isfile(fname):
        fname += '.samples.npy'

    return open_memmap(fname, mode=mode) 
开发者ID:robbert-harms,项目名称:MDT,代码行数:21,代码来源:utils.py

示例4: _store_sample

# 需要导入模块: from numpy.lib import format [as 别名]
# 或者: from numpy.lib.format import open_memmap [as 别名]
def _store_sample(self, optimization_results, roi_indices, sample_ind):
        """Store the optimization results as a next sample."""
        if not os.path.exists(self._output_dir):
            os.makedirs(self._output_dir)

        if self._sample_storage is None:
            self._sample_storage = {}
            for key, value in optimization_results.items():
                samples_path = os.path.join(self._output_dir, key + '.samples.npy')
                mode = 'w+'

                if os.path.isfile(samples_path):
                    mode = 'r+'
                    current_results = open_memmap(samples_path, mode='r')
                    if current_results.shape[1] != self._nmr_samples:
                        mode = 'w+'  # opening the memmap with w+ creates a new one
                    del current_results  # closes the memmap

                shape = [self._total_nmr_voxels, self._nmr_samples]
                if value.ndim > 1:
                    shape.extend(value.shape[1:])
                self._sample_storage[key] = open_memmap(samples_path, mode=mode, dtype=value.dtype, shape=tuple(shape))

        for key, value in optimization_results.items():
            self._sample_storage[key][roi_indices, sample_ind] = value 
开发者ID:robbert-harms,项目名称:MDT,代码行数:27,代码来源:model_bootstrapping.py

示例5: combine

# 需要导入模块: from numpy.lib import format [as 别名]
# 或者: from numpy.lib.format import open_memmap [as 别名]
def combine(self):
        super().combine()

        statistic_maps = {}
        for name in self._sample_storage:
            samples_path = os.path.join(self._output_dir, name + '.samples.npy')
            samples = open_memmap(samples_path, mode='r')
            statistic_maps[name] = np.mean(samples, axis=1)
            statistic_maps[name + '.std'] = np.std(samples, axis=1)

        write_all_as_nifti(restore_volumes(statistic_maps, self._mask),
                           os.path.join(self._output_dir, 'univariate_normal'),
                           nifti_header=self._nifti_header,
                           gzip=self._write_volumes_gzipped)

        write_all_as_nifti({'UsedMask': self._mask}, self._output_dir, nifti_header=self._nifti_header,
                           gzip=self._write_volumes_gzipped)

        if not self._keep_samples:
            for ind, name in enumerate(self._model.get_free_param_names()):
                os.remove(os.path.join(self._output_dir, name + '.samples.npy'))
        else:
            return load_samples(self._output_dir) 
开发者ID:robbert-harms,项目名称:MDT,代码行数:25,代码来源:model_bootstrapping.py

示例6: _create_schema

# 需要导入模块: from numpy.lib import format [as 别名]
# 或者: from numpy.lib.format import open_memmap [as 别名]
def _create_schema(self, *, remote_operation: bool = False):
        """stores the shape and dtype as the schema of a column.

        Parameters
        ----------
        remote_operation : optional, kwarg only, bool
            if this schema is being created from a remote fetch operation, then do not
            place the file symlink in the staging directory. Instead symlink it
            to a special remote staging directory. (default is False, which places the
            symlink in the stage data directory.)
        """
        uid = random_string()
        file_path = self.DATADIR.joinpath(f'{uid}.npy')
        m = open_memmap(file_path,
                        mode='w+',
                        dtype=self.schema_dtype,
                        shape=(COLLECTION_SIZE, *self.schema_shape))
        self.wFp[uid] = m
        self.w_uid = uid
        self.hIdx = 0

        process_dir = self.REMOTEDIR if remote_operation else self.STAGEDIR
        Path(process_dir, f'{uid}.npy').touch() 
开发者ID:tensorwerk,项目名称:hangar-py,代码行数:25,代码来源:numpy_10.py

示例7: test_memmap_roundtrip

# 需要导入模块: from numpy.lib import format [as 别名]
# 或者: from numpy.lib.format import open_memmap [as 别名]
def test_memmap_roundtrip():
    # Fixme: used to crash on windows
    if not (sys.platform == 'win32' or sys.platform == 'cygwin'):
        for arr in basic_arrays + record_arrays:
            if arr.dtype.hasobject:
                # Skip these since they can't be mmap'ed.
                continue
            # Write it out normally and through mmap.
            nfn = os.path.join(tempdir, 'normal.npy')
            mfn = os.path.join(tempdir, 'memmap.npy')
            fp = open(nfn, 'wb')
            try:
                format.write_array(fp, arr)
            finally:
                fp.close()

            fortran_order = (
                arr.flags.f_contiguous and not arr.flags.c_contiguous)
            ma = format.open_memmap(mfn, mode='w+', dtype=arr.dtype,
                                    shape=arr.shape, fortran_order=fortran_order)
            ma[...] = arr
            del ma

            # Check that both of these files' contents are the same.
            fp = open(nfn, 'rb')
            normal_bytes = fp.read()
            fp.close()
            fp = open(mfn, 'rb')
            memmap_bytes = fp.read()
            fp.close()
            assert_equal_(normal_bytes, memmap_bytes)

            # Check that reading the file using memmap works.
            ma = format.open_memmap(nfn, mode='r')
            del ma 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:37,代码来源:test_format.py

示例8: test_memmap_roundtrip

# 需要导入模块: from numpy.lib import format [as 别名]
# 或者: from numpy.lib.format import open_memmap [as 别名]
def test_memmap_roundtrip():
    # Fixme: test crashes nose on windows.
    if not (sys.platform == 'win32' or sys.platform == 'cygwin'):
        for arr in basic_arrays + record_arrays:
            if arr.dtype.hasobject:
                # Skip these since they can't be mmap'ed.
                continue
            # Write it out normally and through mmap.
            nfn = os.path.join(tempdir, 'normal.npy')
            mfn = os.path.join(tempdir, 'memmap.npy')
            fp = open(nfn, 'wb')
            try:
                format.write_array(fp, arr)
            finally:
                fp.close()

            fortran_order = (
                arr.flags.f_contiguous and not arr.flags.c_contiguous)
            ma = format.open_memmap(mfn, mode='w+', dtype=arr.dtype,
                                    shape=arr.shape, fortran_order=fortran_order)
            ma[...] = arr
            del ma

            # Check that both of these files' contents are the same.
            fp = open(nfn, 'rb')
            normal_bytes = fp.read()
            fp.close()
            fp = open(mfn, 'rb')
            memmap_bytes = fp.read()
            fp.close()
            yield assert_equal_, normal_bytes, memmap_bytes

            # Check that reading the file using memmap works.
            ma = format.open_memmap(nfn, mode='r')
            del ma 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:37,代码来源:test_format.py

示例9: test_memmap_roundtrip

# 需要导入模块: from numpy.lib import format [as 别名]
# 或者: from numpy.lib.format import open_memmap [as 别名]
def test_memmap_roundtrip():
    # XXX: test crashes nose on windows. Fix this
    if not (sys.platform == 'win32' or sys.platform == 'cygwin'):
        for arr in basic_arrays + record_arrays:
            if arr.dtype.hasobject:
                # Skip these since they can't be mmap'ed.
                continue
            # Write it out normally and through mmap.
            nfn = os.path.join(tempdir, 'normal.npy')
            mfn = os.path.join(tempdir, 'memmap.npy')
            fp = open(nfn, 'wb')
            try:
                format.write_array(fp, arr)
            finally:
                fp.close()

            fortran_order = (arr.flags.f_contiguous and not arr.flags.c_contiguous)
            ma = format.open_memmap(mfn, mode='w+', dtype=arr.dtype,
                shape=arr.shape, fortran_order=fortran_order)
            ma[...] = arr
            del ma

            # Check that both of these files' contents are the same.
            fp = open(nfn, 'rb')
            normal_bytes = fp.read()
            fp.close()
            fp = open(mfn, 'rb')
            memmap_bytes = fp.read()
            fp.close()
            yield assert_equal, normal_bytes, memmap_bytes

            # Check that reading the file using memmap works.
            ma = format.open_memmap(nfn, mode='r')
            #yield assert_array_equal, ma, arr
            del ma 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:37,代码来源:test_format.py

示例10: _write_sample_results

# 需要导入模块: from numpy.lib import format [as 别名]
# 或者: from numpy.lib.format import open_memmap [as 别名]
def _write_sample_results(self, results, roi_indices):
        """Write the sample results to a .npy file.

        If the given sample files do not exists or if the existing file is not large enough it will create one
        with enough storage to hold all the samples for the given total_nmr_voxels.
        On storing it should also be given a list of voxel indices with the indices of the voxels that are being stored.

        Args:
            results (dict): the samples to write
            roi_indices (ndarray): the roi indices of the voxels we computed
        """
        if not os.path.exists(self._output_dir):
            os.makedirs(self._output_dir)

        for fname in os.listdir(self._output_dir):
            if fname.endswith('.samples.npy'):
                chain_name = fname[0:-len('.samples.npy')]
                if chain_name not in results:
                    os.remove(os.path.join(self._output_dir, fname))

        for output_name, samples in results.items():
            save_indices = self._samples_to_save_method.indices_to_store(output_name, samples.shape[1])
            samples_path = os.path.join(self._output_dir, output_name + '.samples.npy')
            mode = 'w+'

            if os.path.isfile(samples_path):
                mode = 'r+'
                current_results = open_memmap(samples_path, mode='r')
                if current_results.shape[1] != len(save_indices):
                    mode = 'w+'
                del current_results  # closes the memmap

            saved = open_memmap(samples_path, mode=mode, dtype=samples.dtype,
                                shape=(self._total_nmr_voxels, len(save_indices)))
            saved[roi_indices, :] = samples[:, save_indices]
            del saved 
开发者ID:robbert-harms,项目名称:MDT,代码行数:38,代码来源:model_sampling.py


注:本文中的numpy.lib.format.open_memmap方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。