本文整理汇总了Python中numpy.lib.format.open_memmap方法的典型用法代码示例。如果您正苦于以下问题:Python format.open_memmap方法的具体用法?Python format.open_memmap怎么用?Python format.open_memmap使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy.lib.format
的用法示例。
在下文中一共展示了format.open_memmap方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_version_2_0_memmap
# 需要导入模块: from numpy.lib import format [as 别名]
# 或者: from numpy.lib.format import open_memmap [as 别名]
def test_version_2_0_memmap():
# requires more than 2 byte for header
dt = [(("%d" % i) * 100, float) for i in range(500)]
d = np.ones(1000, dtype=dt)
tf = tempfile.mktemp('', 'mmap', dir=tempdir)
# 1.0 requested but data cannot be saved this way
assert_raises(ValueError, format.open_memmap, tf, mode='w+', dtype=d.dtype,
shape=d.shape, version=(1, 0))
ma = format.open_memmap(tf, mode='w+', dtype=d.dtype,
shape=d.shape, version=(2, 0))
ma[...] = d
del ma
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', UserWarning)
ma = format.open_memmap(tf, mode='w+', dtype=d.dtype,
shape=d.shape, version=None)
assert_(w[0].category is UserWarning)
ma[...] = d
del ma
ma = format.open_memmap(tf, mode='r')
assert_array_equal(ma, d)
示例2: load_samples
# 需要导入模块: from numpy.lib import format [as 别名]
# 或者: from numpy.lib.format import open_memmap [as 别名]
def load_samples(data_folder, mode='r'):
"""Load sampled results as a dictionary of numpy memmap.
Args:
data_folder (str): the folder from which to use the samples
mode (str): the mode in which to open the memory mapped sample files (see numpy mode parameter)
Returns:
dict: the memory loaded samples per sampled parameter.
"""
data_dict = {}
for fname in glob.glob(os.path.join(data_folder, '*.samples.npy')):
samples = open_memmap(fname, mode=mode)
map_name = os.path.basename(fname)[0:-len('.samples.npy')]
data_dict.update({map_name: samples})
return data_dict
示例3: load_sample
# 需要导入模块: from numpy.lib import format [as 别名]
# 或者: from numpy.lib.format import open_memmap [as 别名]
def load_sample(fname, mode='r'):
"""Load an matrix of samples from a ``.samples.npy`` file.
This will open the samples as a numpy memory mapped array.
Args:
fname (str): the name of the file to load, suffix of ``.samples.npy`` is not required.
mode (str): the mode in which to open the memory mapped sample files (see numpy mode parameter)
Returns:
ndarray: a memory mapped array with the results
"""
if not os.path.isfile(fname) and not os.path.isfile(fname + '.samples.npy'):
raise ValueError('Could not find sample results at the location "{}"'.format(fname))
if not os.path.isfile(fname):
fname += '.samples.npy'
return open_memmap(fname, mode=mode)
示例4: _store_sample
# 需要导入模块: from numpy.lib import format [as 别名]
# 或者: from numpy.lib.format import open_memmap [as 别名]
def _store_sample(self, optimization_results, roi_indices, sample_ind):
"""Store the optimization results as a next sample."""
if not os.path.exists(self._output_dir):
os.makedirs(self._output_dir)
if self._sample_storage is None:
self._sample_storage = {}
for key, value in optimization_results.items():
samples_path = os.path.join(self._output_dir, key + '.samples.npy')
mode = 'w+'
if os.path.isfile(samples_path):
mode = 'r+'
current_results = open_memmap(samples_path, mode='r')
if current_results.shape[1] != self._nmr_samples:
mode = 'w+' # opening the memmap with w+ creates a new one
del current_results # closes the memmap
shape = [self._total_nmr_voxels, self._nmr_samples]
if value.ndim > 1:
shape.extend(value.shape[1:])
self._sample_storage[key] = open_memmap(samples_path, mode=mode, dtype=value.dtype, shape=tuple(shape))
for key, value in optimization_results.items():
self._sample_storage[key][roi_indices, sample_ind] = value
示例5: combine
# 需要导入模块: from numpy.lib import format [as 别名]
# 或者: from numpy.lib.format import open_memmap [as 别名]
def combine(self):
super().combine()
statistic_maps = {}
for name in self._sample_storage:
samples_path = os.path.join(self._output_dir, name + '.samples.npy')
samples = open_memmap(samples_path, mode='r')
statistic_maps[name] = np.mean(samples, axis=1)
statistic_maps[name + '.std'] = np.std(samples, axis=1)
write_all_as_nifti(restore_volumes(statistic_maps, self._mask),
os.path.join(self._output_dir, 'univariate_normal'),
nifti_header=self._nifti_header,
gzip=self._write_volumes_gzipped)
write_all_as_nifti({'UsedMask': self._mask}, self._output_dir, nifti_header=self._nifti_header,
gzip=self._write_volumes_gzipped)
if not self._keep_samples:
for ind, name in enumerate(self._model.get_free_param_names()):
os.remove(os.path.join(self._output_dir, name + '.samples.npy'))
else:
return load_samples(self._output_dir)
示例6: _create_schema
# 需要导入模块: from numpy.lib import format [as 别名]
# 或者: from numpy.lib.format import open_memmap [as 别名]
def _create_schema(self, *, remote_operation: bool = False):
"""stores the shape and dtype as the schema of a column.
Parameters
----------
remote_operation : optional, kwarg only, bool
if this schema is being created from a remote fetch operation, then do not
place the file symlink in the staging directory. Instead symlink it
to a special remote staging directory. (default is False, which places the
symlink in the stage data directory.)
"""
uid = random_string()
file_path = self.DATADIR.joinpath(f'{uid}.npy')
m = open_memmap(file_path,
mode='w+',
dtype=self.schema_dtype,
shape=(COLLECTION_SIZE, *self.schema_shape))
self.wFp[uid] = m
self.w_uid = uid
self.hIdx = 0
process_dir = self.REMOTEDIR if remote_operation else self.STAGEDIR
Path(process_dir, f'{uid}.npy').touch()
示例7: test_memmap_roundtrip
# 需要导入模块: from numpy.lib import format [as 别名]
# 或者: from numpy.lib.format import open_memmap [as 别名]
def test_memmap_roundtrip():
# Fixme: used to crash on windows
if not (sys.platform == 'win32' or sys.platform == 'cygwin'):
for arr in basic_arrays + record_arrays:
if arr.dtype.hasobject:
# Skip these since they can't be mmap'ed.
continue
# Write it out normally and through mmap.
nfn = os.path.join(tempdir, 'normal.npy')
mfn = os.path.join(tempdir, 'memmap.npy')
fp = open(nfn, 'wb')
try:
format.write_array(fp, arr)
finally:
fp.close()
fortran_order = (
arr.flags.f_contiguous and not arr.flags.c_contiguous)
ma = format.open_memmap(mfn, mode='w+', dtype=arr.dtype,
shape=arr.shape, fortran_order=fortran_order)
ma[...] = arr
del ma
# Check that both of these files' contents are the same.
fp = open(nfn, 'rb')
normal_bytes = fp.read()
fp.close()
fp = open(mfn, 'rb')
memmap_bytes = fp.read()
fp.close()
assert_equal_(normal_bytes, memmap_bytes)
# Check that reading the file using memmap works.
ma = format.open_memmap(nfn, mode='r')
del ma
示例8: test_memmap_roundtrip
# 需要导入模块: from numpy.lib import format [as 别名]
# 或者: from numpy.lib.format import open_memmap [as 别名]
def test_memmap_roundtrip():
# Fixme: test crashes nose on windows.
if not (sys.platform == 'win32' or sys.platform == 'cygwin'):
for arr in basic_arrays + record_arrays:
if arr.dtype.hasobject:
# Skip these since they can't be mmap'ed.
continue
# Write it out normally and through mmap.
nfn = os.path.join(tempdir, 'normal.npy')
mfn = os.path.join(tempdir, 'memmap.npy')
fp = open(nfn, 'wb')
try:
format.write_array(fp, arr)
finally:
fp.close()
fortran_order = (
arr.flags.f_contiguous and not arr.flags.c_contiguous)
ma = format.open_memmap(mfn, mode='w+', dtype=arr.dtype,
shape=arr.shape, fortran_order=fortran_order)
ma[...] = arr
del ma
# Check that both of these files' contents are the same.
fp = open(nfn, 'rb')
normal_bytes = fp.read()
fp.close()
fp = open(mfn, 'rb')
memmap_bytes = fp.read()
fp.close()
yield assert_equal_, normal_bytes, memmap_bytes
# Check that reading the file using memmap works.
ma = format.open_memmap(nfn, mode='r')
del ma
示例9: test_memmap_roundtrip
# 需要导入模块: from numpy.lib import format [as 别名]
# 或者: from numpy.lib.format import open_memmap [as 别名]
def test_memmap_roundtrip():
# XXX: test crashes nose on windows. Fix this
if not (sys.platform == 'win32' or sys.platform == 'cygwin'):
for arr in basic_arrays + record_arrays:
if arr.dtype.hasobject:
# Skip these since they can't be mmap'ed.
continue
# Write it out normally and through mmap.
nfn = os.path.join(tempdir, 'normal.npy')
mfn = os.path.join(tempdir, 'memmap.npy')
fp = open(nfn, 'wb')
try:
format.write_array(fp, arr)
finally:
fp.close()
fortran_order = (arr.flags.f_contiguous and not arr.flags.c_contiguous)
ma = format.open_memmap(mfn, mode='w+', dtype=arr.dtype,
shape=arr.shape, fortran_order=fortran_order)
ma[...] = arr
del ma
# Check that both of these files' contents are the same.
fp = open(nfn, 'rb')
normal_bytes = fp.read()
fp.close()
fp = open(mfn, 'rb')
memmap_bytes = fp.read()
fp.close()
yield assert_equal, normal_bytes, memmap_bytes
# Check that reading the file using memmap works.
ma = format.open_memmap(nfn, mode='r')
#yield assert_array_equal, ma, arr
del ma
示例10: _write_sample_results
# 需要导入模块: from numpy.lib import format [as 别名]
# 或者: from numpy.lib.format import open_memmap [as 别名]
def _write_sample_results(self, results, roi_indices):
"""Write the sample results to a .npy file.
If the given sample files do not exists or if the existing file is not large enough it will create one
with enough storage to hold all the samples for the given total_nmr_voxels.
On storing it should also be given a list of voxel indices with the indices of the voxels that are being stored.
Args:
results (dict): the samples to write
roi_indices (ndarray): the roi indices of the voxels we computed
"""
if not os.path.exists(self._output_dir):
os.makedirs(self._output_dir)
for fname in os.listdir(self._output_dir):
if fname.endswith('.samples.npy'):
chain_name = fname[0:-len('.samples.npy')]
if chain_name not in results:
os.remove(os.path.join(self._output_dir, fname))
for output_name, samples in results.items():
save_indices = self._samples_to_save_method.indices_to_store(output_name, samples.shape[1])
samples_path = os.path.join(self._output_dir, output_name + '.samples.npy')
mode = 'w+'
if os.path.isfile(samples_path):
mode = 'r+'
current_results = open_memmap(samples_path, mode='r')
if current_results.shape[1] != len(save_indices):
mode = 'w+'
del current_results # closes the memmap
saved = open_memmap(samples_path, mode=mode, dtype=samples.dtype,
shape=(self._total_nmr_voxels, len(save_indices)))
saved[roi_indices, :] = samples[:, save_indices]
del saved