本文整理汇总了Python中numpy.isinf方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.isinf方法的具体用法?Python numpy.isinf怎么用?Python numpy.isinf使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy
的用法示例。
在下文中一共展示了numpy.isinf方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _compute_delta
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isinf [as 别名]
def _compute_delta(log_moments, eps):
"""Compute delta for given log_moments and eps.
Args:
log_moments: the log moments of privacy loss, in the form of pairs
of (moment_order, log_moment)
eps: the target epsilon.
Returns:
delta
"""
min_delta = 1.0
for moment_order, log_moment in log_moments:
if moment_order == 0:
continue
if math.isinf(log_moment) or math.isnan(log_moment):
sys.stderr.write("The %d-th order is inf or Nan\n" % moment_order)
continue
if log_moment < moment_order * eps:
min_delta = min(min_delta,
math.exp(log_moment - moment_order * eps))
return min_delta
示例2: _compute_eps
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isinf [as 别名]
def _compute_eps(log_moments, delta):
"""Compute epsilon for given log_moments and delta.
Args:
log_moments: the log moments of privacy loss, in the form of pairs
of (moment_order, log_moment)
delta: the target delta.
Returns:
epsilon
"""
min_eps = float("inf")
for moment_order, log_moment in log_moments:
if moment_order == 0:
continue
if math.isinf(log_moment) or math.isnan(log_moment):
sys.stderr.write("The %d-th order is inf or Nan\n" % moment_order)
continue
min_eps = min(min_eps, (log_moment - math.log(delta)) / moment_order)
return min_eps
示例3: normalize_adj
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isinf [as 别名]
def normalize_adj(A, is_sym=True, exponent=0.5):
"""
Normalize adjacency matrix
is_sym=True: D^{-1/2} A D^{-1/2}
is_sym=False: D^{-1} A
"""
rowsum = np.array(A.sum(1))
if is_sym:
r_inv = np.power(rowsum, -exponent).flatten()
else:
r_inv = np.power(rowsum, -1.0).flatten()
r_inv[np.isinf(r_inv)] = 0.
if sp.isspmatrix(A):
r_mat_inv = sp.diags(r_inv.squeeze())
else:
r_mat_inv = np.diag(r_inv)
if is_sym:
return r_mat_inv.dot(A).dot(r_mat_inv)
else:
return r_mat_inv.dot(A)
示例4: _get_numeric_feature_analysis_data
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isinf [as 别名]
def _get_numeric_feature_analysis_data(self, series, output):
logger.info("Checking series of type: %s (isM8=%s)" % (series.dtype, series.dtype == np.dtype('M8[ns]')))
if np.isinf(series).any():
raise ValueError("Numeric feature '%s' contains Infinity values" % name)
output['stats'] = {
'min': series.min(),
'average': series.mean(),
'median': series.median(),
'max': series.max(),
'p99': series.quantile(0.99),
'std': series.std()
}
output['nulls_count'] = series.isnull().sum()
return output
示例5: test_float
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isinf [as 别名]
def test_float(self):
# offset for alignment test
for i in range(4):
assert_array_equal(self.f[i:] > 0, self.ef[i:])
assert_array_equal(self.f[i:] - 1 >= 0, self.ef[i:])
assert_array_equal(self.f[i:] == 0, ~self.ef[i:])
assert_array_equal(-self.f[i:] < 0, self.ef[i:])
assert_array_equal(-self.f[i:] + 1 <= 0, self.ef[i:])
r = self.f[i:] != 0
assert_array_equal(r, self.ef[i:])
r2 = self.f[i:] != np.zeros_like(self.f[i:])
r3 = 0 != self.f[i:]
assert_array_equal(r, r2)
assert_array_equal(r, r3)
# check bool == 0x1
assert_array_equal(r.view(np.int8), r.astype(np.int8))
assert_array_equal(r2.view(np.int8), r2.astype(np.int8))
assert_array_equal(r3.view(np.int8), r3.astype(np.int8))
# isnan on amd64 takes the same code path
assert_array_equal(np.isnan(self.nf[i:]), self.ef[i:])
assert_array_equal(np.isfinite(self.nf[i:]), ~self.ef[i:])
assert_array_equal(np.isfinite(self.inff[i:]), ~self.ef[i:])
assert_array_equal(np.isinf(self.inff[i:]), self.efnonan[i:])
assert_array_equal(np.signbit(self.signf[i:]), self.ef[i:])
示例6: test_double
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isinf [as 别名]
def test_double(self):
# offset for alignment test
for i in range(2):
assert_array_equal(self.d[i:] > 0, self.ed[i:])
assert_array_equal(self.d[i:] - 1 >= 0, self.ed[i:])
assert_array_equal(self.d[i:] == 0, ~self.ed[i:])
assert_array_equal(-self.d[i:] < 0, self.ed[i:])
assert_array_equal(-self.d[i:] + 1 <= 0, self.ed[i:])
r = self.d[i:] != 0
assert_array_equal(r, self.ed[i:])
r2 = self.d[i:] != np.zeros_like(self.d[i:])
r3 = 0 != self.d[i:]
assert_array_equal(r, r2)
assert_array_equal(r, r3)
# check bool == 0x1
assert_array_equal(r.view(np.int8), r.astype(np.int8))
assert_array_equal(r2.view(np.int8), r2.astype(np.int8))
assert_array_equal(r3.view(np.int8), r3.astype(np.int8))
# isnan on amd64 takes the same code path
assert_array_equal(np.isnan(self.nd[i:]), self.ed[i:])
assert_array_equal(np.isfinite(self.nd[i:]), ~self.ed[i:])
assert_array_equal(np.isfinite(self.infd[i:]), ~self.ed[i:])
assert_array_equal(np.isinf(self.infd[i:]), self.ednonan[i:])
assert_array_equal(np.signbit(self.signd[i:]), self.ed[i:])
示例7: test_zero_division
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isinf [as 别名]
def test_zero_division(self):
with np.errstate(all="ignore"):
for t in [np.complex64, np.complex128]:
a = t(0.0)
b = t(1.0)
assert_(np.isinf(b/a))
b = t(complex(np.inf, np.inf))
assert_(np.isinf(b/a))
b = t(complex(np.inf, np.nan))
assert_(np.isinf(b/a))
b = t(complex(np.nan, np.inf))
assert_(np.isinf(b/a))
b = t(complex(np.nan, np.nan))
assert_(np.isnan(b/a))
b = t(0.)
assert_(np.isnan(b/a))
示例8: test_numpy_type_funcs
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isinf [as 别名]
def test_numpy_type_funcs(func):
# for func in [np.isfinite, np.isinf, np.isnan, np.signbit]:
# copy and paste from idx fixture as pytest doesn't support
# parameters and fixtures at the same time.
major_axis = Index(['foo', 'bar', 'baz', 'qux'])
minor_axis = Index(['one', 'two'])
major_codes = np.array([0, 0, 1, 2, 3, 3])
minor_codes = np.array([0, 1, 0, 1, 0, 1])
index_names = ['first', 'second']
idx = MultiIndex(
levels=[major_axis, minor_axis],
codes=[major_codes, minor_codes],
names=index_names,
verify_integrity=False
)
with pytest.raises(Exception):
func(idx)
示例9: test_sum_inf
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isinf [as 别名]
def test_sum_inf(self):
s = Series(np.random.randn(10))
s2 = s.copy()
s[5:8] = np.inf
s2[5:8] = np.nan
assert np.isinf(s.sum())
arr = np.random.randn(100, 100).astype('f4')
arr[:, 2] = np.inf
with pd.option_context("mode.use_inf_as_na", True):
tm.assert_almost_equal(s.sum(), s2.sum())
res = nanops.nansum(arr, axis=1)
assert np.isinf(res).all()
示例10: _get_viewpoint_estimation_labels
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isinf [as 别名]
def _get_viewpoint_estimation_labels(viewpoint_data, clss, num_classes):
"""Bounding-box regression targets are stored in a compact form in the
roidb.
This function expands those targets into the 4-of-4*K representation used
by the network (i.e. only one class has non-zero targets). The loss weights
are similarly expanded.
Returns:
view_target_data (ndarray): N x 3K blob of regression targets
view_loss_weights (ndarray): N x 3K blob of loss weights
"""
view_targets = np.zeros((clss.size, 3 * num_classes), dtype=np.float32)
view_loss_weights = np.zeros(view_targets.shape, dtype=np.float32)
inds = np.where( (clss > 0) & np.isfinite(viewpoint_data[:,0]) & np.isfinite(viewpoint_data[:,1]) & np.isfinite(viewpoint_data[:,2]) )[0]
for ind in inds:
cls = clss[ind]
start = 3 * cls
end = start + 3
view_targets[ind, start:end] = viewpoint_data[ind, :]
view_loss_weights[ind, start:end] = [1., 1., 1.]
assert not np.isinf(view_targets).any(), 'viewpoint undefined'
return view_targets, view_loss_weights
示例11: _check_1d_arrays
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isinf [as 别名]
def _check_1d_arrays(a: ndarray, b: ndarray, kind: str, tol: float = 10 ** -4) -> bool:
if kind == 'O':
if not va.is_equal_1d_object(a, b):
raise AssertionError(f'The values of the columns are not equal')
return True
elif kind == 'f':
with np.errstate(invalid='ignore'):
criteria1 = np.abs(a - b) < tol
criteria2 = np.isnan(a) & np.isnan(b)
criteria3 = np.isinf(a) & np.isinf(b)
return (criteria1 | criteria2 | criteria3).all()
else:
try:
np.testing.assert_array_equal(a, b)
except AssertionError:
return False
return True
示例12: map
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isinf [as 别名]
def map(self, data):
data = data[self.fieldName]
colors = np.empty((len(data), 4))
default = np.array(fn.colorTuple(self['Default'])) / 255.
colors[:] = default
for v in self.param('Values'):
mask = data == v.maskValue
c = np.array(fn.colorTuple(v.value())) / 255.
colors[mask] = c
#scaled = np.clip((data-self['Min']) / (self['Max']-self['Min']), 0, 1)
#cmap = self.value()
#colors = cmap.map(scaled, mode='float')
#mask = np.isnan(data) | np.isinf(data)
#nanColor = self['NaN']
#nanColor = (nanColor.red()/255., nanColor.green()/255., nanColor.blue()/255., nanColor.alpha()/255.)
#colors[mask] = nanColor
return colors
示例13: testDtypeExecution
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isinf [as 别名]
def testDtypeExecution(self):
a = ones((10, 20), dtype='f4', chunk_size=5)
c = truediv(a, 2, dtype='f8')
res = self.executor.execute_tensor(c, concat=True)[0]
self.assertEqual(res.dtype, np.float64)
c = truediv(a, 0, dtype='f8')
res = self.executor.execute_tensor(c, concat=True)[0]
self.assertTrue(np.isinf(res[0, 0]))
with self.assertRaises(FloatingPointError):
with np.errstate(divide='raise'):
c = truediv(a, 0, dtype='f8')
_ = self.executor.execute_tensor(c, concat=True)[0] # noqa: F841
示例14: scale_neg_1_to_1_with_zero_mean_log_abs_max
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isinf [as 别名]
def scale_neg_1_to_1_with_zero_mean_log_abs_max(v):
'''
!!! not working
'''
df = pd.DataFrame({'v':v,
'sign': (v > 0) * 2 - 1})
df['lg'] = np.log(np.abs(v)) / np.log(1.96)
df['exclude'] = (np.isinf(df.lg) | np.isneginf(df.lg))
for mask in [(df['sign'] == -1) & (df['exclude'] == False),
(df['sign'] == 1) & (df['exclude'] == False)]:
df[mask]['lg'] = df[mask]['lg'].max() - df[mask]['lg']
df['lg'] *= df['sign']
df['lg'] = df['lg'].fillna(0)
print(df[df['exclude']]['lg'].values)
#to_rescale = convention_df['lg'].reindex(v.index)
df['to_out'] = scale_neg_1_to_1_with_zero_mean_abs_max(df['lg'])
print('right')
print(df.sort_values(by='lg').iloc[:5])
print(df.sort_values(by='lg').iloc[-5:])
print('to_out')
print(df.sort_values(by='to_out').iloc[:5])
print(df.sort_values(by='to_out').iloc[-5:])
print(len(df), len(df.dropna()))
return df['to_out']
示例15: calc_inv_vol_weights
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isinf [as 别名]
def calc_inv_vol_weights(returns):
"""
Calculates weights proportional to inverse volatility of each column.
Returns weights that are inversely proportional to the column's
volatility resulting in a set of portfolio weights where each position
has the same level of volatility.
Note, that assets with returns all equal to NaN or 0 are excluded from
the portfolio (their weight is set to NaN).
Returns:
Series {col_name: weight}
"""
# calc vols
vol = np.divide(1., np.std(returns, ddof=1))
vol[np.isinf(vol)] = np.NaN
volsum = vol.sum()
return np.divide(vol, volsum)