当前位置: 首页>>代码示例>>Python>>正文


Python numpy.isin方法代码示例

本文整理汇总了Python中numpy.isin方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.isin方法的具体用法?Python numpy.isin怎么用?Python numpy.isin使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy的用法示例。


在下文中一共展示了numpy.isin方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: dataframe_select

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isin [as 别名]
def dataframe_select(df, *cols, **filters):
    '''
    dataframe_select(df, k1=v1, k2=v2...) yields df after selecting all the columns in which the
      given keys (k1, k2, etc.) have been selected such that the associated columns in the dataframe
      contain only the rows whose cells match the given values.
    dataframe_select(df, col1, col2...) selects the given columns.
    dataframe_select(df, col1, col2..., k1=v1, k2=v2...) selects both.
    
    If a value is a tuple/list of 2 elements, then it is considered a range where cells must fall
    between the values. If value is a tuple/list of more than 2 elements or is a set of any length
    then it is a list of values, any one of which can match the cell.
    '''
    ii = np.ones(len(df), dtype='bool')
    for (k,v) in six.iteritems(filters):
        vals = df[k].values
        if   pimms.is_set(v):                    jj = np.isin(vals, list(v))
        elif pimms.is_vector(v) and len(v) == 2: jj = (v[0] <= vals) & (vals < v[1])
        elif pimms.is_vector(v):                 jj = np.isin(vals, list(v))
        else:                                    jj = (vals == v)
        ii = np.logical_and(ii, jj)
    if len(ii) != np.sum(ii): df = df.loc[ii]
    if len(cols) > 0: df = df[list(cols)]
    return df 
开发者ID:noahbenson,项目名称:neuropythy,代码行数:25,代码来源:core.py

示例2: _emg_activation_activations

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isin [as 别名]
def _emg_activation_activations(activity, duration_min=0.05):

    activations = events_find(activity, threshold=0.5, threshold_keep="above", duration_min=duration_min)
    activations["offset"] = activations["onset"] + activations["duration"]

    baseline = events_find(activity == 0, threshold=0.5, threshold_keep="above", duration_min=duration_min)
    baseline["offset"] = baseline["onset"] + baseline["duration"]

    # Cross-comparison
    valid = np.isin(activations["onset"], baseline["offset"])
    onsets = activations["onset"][valid]
    offsets = activations["offset"][valid]

    new_activity = np.array([])
    for x, y in zip(onsets, offsets):
        activated = np.arange(x, y)
        new_activity = np.append(new_activity, activated)

    # Prepare Output.
    info = {"EMG_Onsets": onsets, "EMG_Offsets": offsets, "EMG_Activity": new_activity}

    return info 
开发者ID:neuropsychology,项目名称:NeuroKit,代码行数:24,代码来源:emg_activation.py

示例3: find_all_elements_with_node

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isin [as 别名]
def find_all_elements_with_node(self, node_nr):
        """ Finds all elements that have a given node

        Parameters
        -----------------
        node_nr: int
            number of node

        Returns
        ---------------
        elm_nr: np.ndarray
            array with indices of element numbers

        """
        elm_with_node = np.any(
            np.isin(self.node_number_list, node_nr),
            axis=1)
        return self.elm_number[elm_with_node] 
开发者ID:simnibs,项目名称:simnibs,代码行数:20,代码来源:mesh_io.py

示例4: nodes_with_tag

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isin [as 别名]
def nodes_with_tag(self, tags):
        ''' Gets all nodes indexes that are part of at least one element with the given
        tags

        Parameters
        -----------
        tags: list
            Integer tags to search

        Returns
        -------------
        nodes: ndarray of integer
            Indexes of nodes with given tag
        '''
        nodes = np.unique(self[np.isin(self.tag1, tags)].reshape(-1))
        nodes = nodes[nodes > 0]
        return nodes 
开发者ID:simnibs,项目名称:simnibs,代码行数:19,代码来源:mesh_io.py

示例5: mean_field_norm

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isin [as 别名]
def mean_field_norm(self):
        ''' Calculates V*w/sum(w)
        Where V is the norm of the field, and w is the volume or area of the mesh where
        the field is defined. This can be used as a focality metric. It should give out
        small values when the field is focal and

        Returns
        ----------
        eff_area: float
            Area or volume of mesh, weighted by the field
        '''
        self._test_msh()
        if np.all(np.isin([2, 4], self.mesh.elm.elm_type)):
            warnings.warn('Calculating effective volume/area of fields in meshes with'
                          ' triangles and tetrahedra can give misleading results')

        norm = self._norm()
        weights = self._weights()

        return np.sum(norm * weights) / np.sum(weights) 
开发者ID:simnibs,项目名称:simnibs,代码行数:22,代码来源:mesh_io.py

示例6: test_isin

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isin [as 别名]
def test_isin(self):
        # the tests for in1d cover most of isin's behavior
        # if in1d is removed, would need to change those tests to test
        # isin instead.
        a = np.arange(24).reshape([2, 3, 4])
        mask = np.zeros([2, 3, 4])
        mask[1, 2, 0] = 1
        a = array(a, mask=mask)
        b = array(data=[0, 10, 20, 30,  1,  3, 11, 22, 33],
                  mask=[0,  1,  0,  1,  0,  1,  0,  1,  0])
        ec = zeros((2, 3, 4), dtype=bool)
        ec[0, 0, 0] = True
        ec[0, 0, 1] = True
        ec[0, 2, 3] = True
        c = isin(a, b)
        assert_(isinstance(c, MaskedArray))
        assert_array_equal(c, ec)
        #compare results of np.isin to ma.isin
        d = np.isin(a, b[~b.mask]) & ~a.mask
        assert_array_equal(c, d) 
开发者ID:Frank-qlu,项目名称:recruit,代码行数:22,代码来源:test_extras.py

示例7: _sample_intermittent

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isin [as 别名]
def _sample_intermittent(self, group):
        # we need to collect also the residence
        # function
        # the residence function (1 if in the reference group, 0 otherwise)
        mask = np.isin(self.reference, group)
        # append the residence function to its timeseries
        self.maskseries.append(list(mask))
        if self.observable is not None:
            # this copies a vector of zeros with the correct shape
            sampled = self.reference_obs.copy()
            obs = self.observable.compute(group)
            sampled[np.where(mask)] = obs
            self.timeseries.append(list(sampled.flatten()))
        else:
            self.timeseries = self.maskseries
            if self.shape is None:
                self.shape = (1, )
            sampled = mask
        return sampled 
开发者ID:Marcello-Sega,项目名称:pytim,代码行数:21,代码来源:correlator.py

示例8: test_sampler

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isin [as 别名]
def test_sampler():
    torch.manual_seed(12345)
    edge_index = erdos_renyi_graph(num_nodes=10, edge_prob=0.5)
    E = edge_index.size(1)

    loader = NeighborSampler(edge_index, sizes=[2, 4], batch_size=2)
    assert loader.__repr__() == 'NeighborSampler(sizes=[2, 4])'
    assert len(loader) == 5

    for batch_size, n_id, adjs in loader:
        assert batch_size == 2
        assert all(np.isin(n_id, torch.arange(10)).tolist())
        assert n_id.unique().size(0) == n_id.size(0)
        for (edge_index, e_id, size) in adjs:
            assert int(edge_index[0].max() + 1) <= size[0]
            assert int(edge_index[1].max() + 1) <= size[1]
            assert all(np.isin(e_id, torch.arange(E)).tolist())
            assert e_id.unique().size(0) == e_id.size(0)
            assert size[0] >= size[1]

    out = loader.sample([1, 2])
    assert len(out) == 3 
开发者ID:rusty1s,项目名称:pytorch_geometric,代码行数:24,代码来源:test_sampler.py

示例9: create_mask_from_class_map

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isin [as 别名]
def create_mask_from_class_map(class_map_path, out_path, classes_of_interest, buffer_size=0, out_resolution=None):
    """Creates a mask from a classification mask: 1 for each pixel containing one of classes_of_interest, otherwise 0"""
    # TODO: pull this out of the above function
    class_image = gdal.Open(class_map_path)
    class_array = class_image.GetVirtualMemArray()
    mask_array = np.isin(class_array, classes_of_interest)
    out_mask = create_matching_dataset(class_image, out_path, datatype=gdal.GDT_Byte)
    out_array = out_mask.GetVirtualMemArray(eAccess=gdal.GA_Update)
    np.copyto(out_array, mask_array)
    class_array = None
    class_image = None
    out_array = None
    out_mask = None
    if out_resolution:
        resample_image_in_place(out_path, out_resolution)
    if buffer_size:
        buffer_mask_in_place(out_path, buffer_size)
    return out_path 
开发者ID:clcr,项目名称:pyeo,代码行数:20,代码来源:raster_manipulation.py

示例10: create_mask_from_fmask

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isin [as 别名]
def create_mask_from_fmask(in_l1_dir, out_path):
    log = logging.getLogger(__name__)
    log.info("Creating fmask for {}".format(in_l1_dir))
    with TemporaryDirectory() as td:
        temp_fmask_path = os.path.join(td, "fmask.tif")
        apply_fmask(in_l1_dir, temp_fmask_path)
        fmask_image = gdal.Open(temp_fmask_path)
        fmask_array = fmask_image.GetVirtualMemArray()
        out_image = create_matching_dataset(fmask_image, out_path, datatype=gdal.GDT_Byte)
        out_array = out_image.GetVirtualMemArray(eAccess=gdal.GA_Update)
        log.info("fmask created, converting to binary cloud/shadow mask")
        out_array[:,:] = np.isin(fmask_array, (2, 3, 4), invert=True)
        out_array = None
        out_image = None
        fmask_array = None
        fmask_image = None
        resample_image_in_place(out_path, 10) 
开发者ID:clcr,项目名称:pyeo,代码行数:19,代码来源:raster_manipulation.py

示例11: life_rule

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isin [as 别名]
def life_rule(X: np.ndarray, rulestring: str) -> np.ndarray:
    """A generalized life rule that accepts a rulestring in B/S notation

    Rulestrings are commonly expressed in the B/S notation where B (birth) is a
    list of all numbers of live neighbors that cause a dead cell to come alive,
    and S (survival) is a list of all the numbers of live neighbors that cause
    a live cell to remain alive.

    Parameters
    ----------
    X : np.ndarray
        The input board matrix
    rulestring : str
        The rulestring in B/S notation

    Returns
    -------
    np.ndarray
        Updated board after applying the rule
    """
    birth_req, survival_req = _parse_rulestring(rulestring)
    neighbors = _count_neighbors(X)
    birth_rule = (X == 0) & (np.isin(neighbors, birth_req))
    survival_rule = (X == 1) & (np.isin(neighbors, survival_req))
    return birth_rule | survival_rule 
开发者ID:ljvmiranda921,项目名称:seagull,代码行数:27,代码来源:rules.py

示例12: GetPolys2D

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isin [as 别名]
def GetPolys2D(self):
        """Returns the polys as a 2D VTKArray instance.

        Returns
        -------
        polys : 2D ndarray, shape = (n_points, n)
            PolyData polys.

        Raises
        ------
        ValueError
            If PolyData has different poly types.
        """

        v = self.GetPolys()
        if v is None:
            return v

        ct = self.cell_types
        if np.isin([VTK_QUAD, VTK_TRIANGLE], ct).all() or VTK_POLYGON in ct:
            raise ValueError('PolyData contains different poly types')
        return v.reshape(-1, v[0] + 1)[:, 1:] 
开发者ID:MICA-MNI,项目名称:BrainSpace,代码行数:24,代码来源:data_object.py

示例13: set_node_transfers

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isin [as 别名]
def set_node_transfers(self):
        for index, mapping in enumerate(self.tmap):
            for pair, node in mapping.items():
                i, j = pair
                comm = int(node.comm)
                comm_elev = node.elev
                neighbors = Grid._select_surround_ravel(self, comm, self.dem.shape)
                ser = pd.DataFrame(np.column_stack([neighbors, self.dem.flat[neighbors],
                                                    self.ws[index].flat[neighbors]]))
                ser = ser[ser[2].isin(list(pair))]
                g = ser.groupby(2).idxmin()[1].apply(lambda x: ser.loc[x, 0])
                fullix = self.drop.flat[g.values.astype(int)]
                lv = self.dropmap.loc[fullix][0].values
                nm = self.dropmap.loc[fullix][1].values
                g = pd.DataFrame(np.column_stack([lv, nm]), index=g.index.values.astype(int),
                                columns=['level', 'name']).to_dict(orient='index')
                # Children will always be in numeric order from left to right
                lt, rt = g[j], g[i]
                node.l.t = self.nodes[lt['level']][lt['name']]
                node.r.t = self.nodes[rt['level']][rt['name']]
        self.set_singleton_transfer(self.root) 
开发者ID:mdbartos,项目名称:pysheds,代码行数:23,代码来源:rfsm.py

示例14: set_cumulative_capacities

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isin [as 别名]
def set_cumulative_capacities(self, node):
        if node.l:
            self.set_cumulative_capacities(node.l)
        if node.r:
            self.set_cumulative_capacities(node.r)
        if node.parent:
            if node.name:
                elevdiff = node.parent.elev - self.dem[self.ws[node.level] == node.name]
                vol = abs(np.asscalar(elevdiff[elevdiff > 0].sum()) * self.x * self.y)
                node.vol = vol
            else:
                leaves = []
                self.enumerate_leaves(node, level=node.level, stack=leaves)
                mask = np.isin(self.ws[node.level], leaves)
                boundary = list(chain.from_iterable([self.b[node.level].setdefault(pair, [])
                                                        for pair in combinations(leaves, 2)]))
                mask.flat[boundary] = True
                elevdiff = node.parent.elev - self.dem[mask]
                vol = abs(np.asscalar(elevdiff[elevdiff > 0].sum()) * self.x * self.y)
                node.vol = vol 
开发者ID:mdbartos,项目名称:pysheds,代码行数:22,代码来源:rfsm.py

示例15: test_reward

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import isin [as 别名]
def test_reward(self, monkeypatch, physical_system, reference_generator, observed_state_idx, violated_state_idx):
        observed_states = list(np.array(physical_system.state_names)[observed_state_idx])
        rf = RewardFunction(observed_states)
        rf.set_modules(physical_system, reference_generator)
        monkeypatch.setattr(rf, "_reward", self.mock_standard_reward)
        monkeypatch.setattr(rf, "_limit_violation_reward", self.mock_limit_violation_reward)
        state = np.ones_like(physical_system.state_names, dtype=float) * 0.5
        state[violated_state_idx] = 1.5
        reward, done = rf.reward(state, None)
        if np.any(np.isin(observed_state_idx, violated_state_idx)):
            assert reward == -1
            assert done
        else:
            assert reward == 1
            assert not done
        # Test negative limit violations
        state[violated_state_idx] = -1.5
        reward, done = rf.reward(state, None)

        if np.any(np.isin(observed_state_idx, violated_state_idx)):
            assert reward == -1
            assert done
        else:
            assert reward == 1
            assert not done 
开发者ID:upb-lea,项目名称:gym-electric-motor,代码行数:27,代码来源:test_core.py


注:本文中的numpy.isin方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。