本文整理汇总了Python中numpy.fmax方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.fmax方法的具体用法?Python numpy.fmax怎么用?Python numpy.fmax使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy
的用法示例。
在下文中一共展示了numpy.fmax方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_NotImplemented_not_returned
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import fmax [as 别名]
def test_NotImplemented_not_returned(self):
# See gh-5964 and gh-2091. Some of these functions are not operator
# related and were fixed for other reasons in the past.
binary_funcs = [
np.power, np.add, np.subtract, np.multiply, np.divide,
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
np.minimum, np.mod,
np.greater, np.greater_equal, np.less, np.less_equal,
np.equal, np.not_equal]
a = np.array('1')
b = 1
c = np.array([1., 2.])
for f in binary_funcs:
assert_raises(TypeError, f, a, b)
assert_raises(TypeError, f, c, a)
示例2: test_reduce
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import fmax [as 别名]
def test_reduce(self):
dflt = np.typecodes['AllFloat']
dint = np.typecodes['AllInteger']
seq1 = np.arange(11)
seq2 = seq1[::-1]
func = np.fmax.reduce
for dt in dint:
tmp1 = seq1.astype(dt)
tmp2 = seq2.astype(dt)
assert_equal(func(tmp1), 10)
assert_equal(func(tmp2), 10)
for dt in dflt:
tmp1 = seq1.astype(dt)
tmp2 = seq2.astype(dt)
assert_equal(func(tmp1), 10)
assert_equal(func(tmp2), 10)
tmp1[::2] = np.nan
tmp2[::2] = np.nan
assert_equal(func(tmp1), 9)
assert_equal(func(tmp2), 9)
示例3: test_NotImplemented_not_returned
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import fmax [as 别名]
def test_NotImplemented_not_returned(self):
# See gh-5964 and gh-2091. Some of these functions are not operator
# related and were fixed for other reasons in the past.
binary_funcs = [
np.power, np.add, np.subtract, np.multiply, np.divide,
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
np.minimum, np.mod
]
# These functions still return NotImplemented. Will be fixed in
# future.
# bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]
a = np.array('1')
b = 1
for f in binary_funcs:
assert_raises(TypeError, f, a, b)
示例4: clip_to_window
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import fmax [as 别名]
def clip_to_window(boxlist, window):
"""Clip bounding boxes to a window.
This op clips input bounding boxes (represented by bounding box
corners) to a window, optionally filtering out boxes that do not
overlap at all with the window.
Args:
boxlist: BoxList holding M_in boxes
window: a numpy array of shape [4] representing the
[y_min, x_min, y_max, x_max] window to which the op
should clip boxes.
Returns:
a BoxList holding M_out boxes where M_out <= M_in
"""
y_min, x_min, y_max, x_max = np.array_split(boxlist.get(), 4, axis=1)
win_y_min = window[0]
win_x_min = window[1]
win_y_max = window[2]
win_x_max = window[3]
y_min_clipped = np.fmax(np.fmin(y_min, win_y_max), win_y_min)
y_max_clipped = np.fmax(np.fmin(y_max, win_y_max), win_y_min)
x_min_clipped = np.fmax(np.fmin(x_min, win_x_max), win_x_min)
x_max_clipped = np.fmax(np.fmin(x_max, win_x_max), win_x_min)
clipped = np_box_list.BoxList(
np.hstack([y_min_clipped, x_min_clipped, y_max_clipped, x_max_clipped]))
clipped = _copy_extra_fields(clipped, boxlist)
areas = area(clipped)
nonzero_area_indices = np.reshape(np.nonzero(np.greater(areas, 0.0)),
[-1]).astype(np.int32)
return gather(clipped, nonzero_area_indices)
示例5: assertTensorClose
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import fmax [as 别名]
def assertTensorClose(self, a, b, atol=1e-3, rtol=1e-3):
npa, npb = as_numpy(a), as_numpy(b)
self.assertTrue(
np.allclose(npa, npb, atol=atol),
'Tensor close check failed\n{}\n{}\nadiff={}, rdiff={}'.format(a, b, np.abs(npa - npb).max(), np.abs((npa - npb) / np.fmax(npa, 1e-5)).max())
)
示例6: test_reduce_complex
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import fmax [as 别名]
def test_reduce_complex(self):
assert_equal(np.fmax.reduce([1, 2j]), 1)
assert_equal(np.fmax.reduce([1+3j, 2j]), 1+3j)
示例7: test_float_nans
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import fmax [as 别名]
def test_float_nans(self):
nan = np.nan
arg1 = np.array([0, nan, nan])
arg2 = np.array([nan, 0, nan])
out = np.array([0, 0, nan])
assert_equal(np.fmax(arg1, arg2), out)
示例8: MTS_LS3v1
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import fmax [as 别名]
def MTS_LS3v1(Xk, Xk_fit, Xb, Xb_fit, improve, SR, task, phi=3, BONUS1=10, BONUS2=1, rnd=rand, **ukwargs):
r"""Multiple trajectory local search three version one.
Args:
Xk (numpy.ndarray): Current solution.
Xk_fit (float): Current solutions fitness/function value.
Xb (numpy.ndarray): Global best solution.
Xb_fit (float): Global best solutions fitness/function value.
improve (bool): Has the solution been improved.
SR (numpy.ndarray): Search range.
task (Task): Optimization task.
phi (int): Number of new generated positions.
BONUS1 (int): Bonus reward for improving global best solution.
BONUS2 (int): Bonus reward for improving solution.
rnd (mtrand.RandomState): Random number generator.
**ukwargs (Dict[str, Any]): Additional arguments.
Returns:
Tuple[numpy.ndarray, float, numpy.ndarray, float, bool, numpy.ndarray]:
1. New solution.
2. New solutions fitness/function value.
3. Global best if found else old global best.
4. Global bests function/fitness value.
5. If solution has improved.
6. Search range.
"""
grade, Disp = 0.0, task.bRange / 10
while True in (Disp > 1e-3):
Xn = apply_along_axis(task.repair, 1, asarray([rnd.permutation(Xk) + Disp * rnd.uniform(-1, 1, len(Xk)) for _ in range(phi)]), rnd)
Xn_f = apply_along_axis(task.eval, 1, Xn)
iBetter, iBetterBest = argwhere(Xn_f < Xk_fit), argwhere(Xn_f < Xb_fit)
grade += len(iBetterBest) * BONUS1 + (len(iBetter) - len(iBetterBest)) * BONUS2
if len(Xn_f[iBetterBest]) > 0:
ib, improve = argmin(Xn_f[iBetterBest]), True
Xb, Xb_fit, Xk, Xk_fit = Xn[iBetterBest][ib][0].copy(), Xn_f[iBetterBest][ib][0], Xn[iBetterBest][ib][0].copy(), Xn_f[iBetterBest][ib][0]
elif len(Xn_f[iBetter]) > 0:
ib, improve = argmin(Xn_f[iBetter]), True
Xk, Xk_fit = Xn[iBetter][ib][0].copy(), Xn_f[iBetter][ib][0]
Su, Sl = fmin(task.Upper, Xk + 2 * Disp), fmax(task.Lower, Xk - 2 * Disp)
Disp = (Su - Sl) / 10
return Xk, Xk_fit, Xb, Xb_fit, improve, grade, SR
示例9: CovarianceMaatrixAdaptionEvolutionStrategyF
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import fmax [as 别名]
def CovarianceMaatrixAdaptionEvolutionStrategyF(task, epsilon=1e-20, rnd=rand):
lam, alpha_mu, hs, sigma0 = (4 + round(3 * log(task.D))) * 10, 2, 0, 0.3 * task.bcRange()
mu = int(round(lam / 2))
w = log(mu + 0.5) - log(range(1, mu + 1))
w = w / sum(w)
mueff = 1 / sum(w ** 2)
cs = (mueff + 2) / (task.D + mueff + 5)
ds = 1 + cs + 2 * max(sqrt((mueff - 1) / (task.D + 1)) - 1, 0)
ENN = sqrt(task.D) * (1 - 1 / (4 * task.D) + 1 / (21 * task.D ** 2))
cc, c1 = (4 + mueff / task.D) / (4 + task.D + 2 * mueff / task.D), 2 / ((task.D + 1.3) ** 2 + mueff)
cmu, hth = min(1 - c1, alpha_mu * (mueff - 2 + 1 / mueff) / ((task.D + 2) ** 2 + alpha_mu * mueff / 2)), (1.4 + 2 / (task.D + 1)) * ENN
ps, pc, C, sigma, M = full(task.D, 0.0), full(task.D, 0.0), eye(task.D), sigma0, full(task.D, 0.0)
x = rnd.uniform(task.bcLower(), task.bcUpper())
x_f = task.eval(x)
while not task.stopCondI():
pop_step = asarray([rnd.multivariate_normal(full(task.D, 0.0), C) for _ in range(int(lam))])
pop = asarray([task.repair(x + sigma * ps, rnd) for ps in pop_step])
pop_f = apply_along_axis(task.eval, 1, pop)
isort = argsort(pop_f)
pop, pop_f, pop_step = pop[isort[:mu]], pop_f[isort[:mu]], pop_step[isort[:mu]]
if pop_f[0] < x_f: x, x_f = pop[0], pop_f[0]
M = sum(w * pop_step.T, axis=1)
ps = solve(chol(C).conj() + epsilon, ((1 - cs) * ps + sqrt(cs * (2 - cs) * mueff) * M + epsilon).T)[0].T
sigma *= exp(cs / ds * (norm(ps) / ENN - 1)) ** 0.3
ifix = where(sigma == inf)
if any(ifix): sigma[ifix] = sigma0
if norm(ps) / sqrt(1 - (1 - cs) ** (2 * (task.Iters + 1))) < hth: hs = 1
else: hs = 0
delta = (1 - hs) * cc * (2 - cc)
pc = (1 - cc) * pc + hs * sqrt(cc * (2 - cc) * mueff) * M
C = (1 - c1 - cmu) * C + c1 * (tile(pc, [len(pc), 1]) * tile(pc.reshape([len(pc), 1]), [1, len(pc)]) + delta * C)
for i in range(mu): C += cmu * w[i] * tile(pop_step[i], [len(pop_step[i]), 1]) * tile(pop_step[i].reshape([len(pop_step[i]), 1]), [1, len(pop_step[i])])
E, V = eig(C)
if any(E < epsilon):
E = fmax(E, 0)
C = lstsq(V.T, dot(V, diag(E)).T, rcond=None)[0].T
return x, x_f
示例10: MutationUros
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import fmax [as 别名]
def MutationUros(pop, ic, mr, task, rnd=rand):
r"""Mutation method made by Uros Mlakar.
Args:
pop (numpy.ndarray[Individual]): Current population.
ic (int): Index of individual.
mr (float): Mutation rate.
task (Task): Optimization task.
rnd (mtrand.RandomState): Random generator.
Returns:
numpy.ndarray: New genotype.
"""
return fmin(fmax(rnd.normal(pop[ic], mr * task.bRange), task.Lower), task.Upper)
示例11: calcLuciferin
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import fmax [as 别名]
def calcLuciferin(self, L, GS_f):
r"""TODO.
Args:
L:
GS_f:
Returns:
"""
return fmax(0, (1 - self.rho) * L + self.gamma * GS_f)
示例12: test_complex_nans
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import fmax [as 别名]
def test_complex_nans(self):
nan = np.nan
for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
arg1 = np.array([0, cnan, cnan], dtype=np.complex)
arg2 = np.array([cnan, 0, cnan], dtype=np.complex)
out = np.array([0, 0, nan], dtype=np.complex)
assert_equal(np.fmax(arg1, arg2), out)