当前位置: 首页>>代码示例>>Python>>正文


Python numpy.floor方法代码示例

本文整理汇总了Python中numpy.floor方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.floor方法的具体用法?Python numpy.floor怎么用?Python numpy.floor使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在numpy的用法示例。


在下文中一共展示了numpy.floor方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: frame

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import floor [as 别名]
def frame(data, window_length, hop_length):
  """Convert array into a sequence of successive possibly overlapping frames.

  An n-dimensional array of shape (num_samples, ...) is converted into an
  (n+1)-D array of shape (num_frames, window_length, ...), where each frame
  starts hop_length points after the preceding one.

  This is accomplished using stride_tricks, so the original data is not
  copied.  However, there is no zero-padding, so any incomplete frames at the
  end are not included.

  Args:
    data: np.array of dimension N >= 1.
    window_length: Number of samples in each frame.
    hop_length: Advance (in samples) between each window.

  Returns:
    (N+1)-D np.array with as many rows as there are complete frames that can be
    extracted.
  """
  num_samples = data.shape[0]
  num_frames = 1 + int(np.floor((num_samples - window_length) / hop_length))
  shape = (num_frames, window_length) + data.shape[1:]
  strides = (data.strides[0] * hop_length,) + data.strides
  return np.lib.stride_tricks.as_strided(data, shape=shape, strides=strides) 
开发者ID:jordipons,项目名称:sklearn-audio-transfer-learning,代码行数:27,代码来源:mel_features.py

示例2: _transform_col

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import floor [as 别名]
def _transform_col(self, x, i):
        """Encode one numerical feature column to quantiles.

        Args:
            x (pandas.Series): numerical feature column to encode
            i (int): column index of the numerical feature

        Returns:
            Encoded feature (pandas.Series).
        """
        # Map values to the emperical CDF between .1% and 99.9%
        rv = np.ones_like(x) * -1

        filt = ~np.isnan(x)
        rv[filt] = np.floor((self.ecdfs[i](x[filt]) * 0.998 + .001) *
                            self.n_label)

        return rv 
开发者ID:jeongyoonlee,项目名称:Kaggler,代码行数:20,代码来源:numerical.py

示例3: __init__

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import floor [as 别名]
def __init__(self, x0, mu, epsmult = 4.0, noc = False):
        #determine number of planets and validate input
        nplanets = x0.size/6.
        if (nplanets - np.floor(nplanets) > 0):
            raise Exception('The length of x0 must be a multiple of 6.')
        
        if (mu.size != nplanets):
            raise Exception('The length of mu must be the length of x0 divided by 6')
        
        self.nplanets = int(nplanets)
        self.mu = np.squeeze(mu)
        if (self.mu.size == 1):
            self.mu = np.array(mu)
        
        self.epsmult = epsmult
        
        if not(noc) and ('EXOSIMS.util.KeplerSTM_C.CyKeplerSTM' in sys.modules):
            self.havec = True
            self.x0 = np.squeeze(x0)
        else:
            self.havec = False
            self.updateState(np.squeeze(x0)) 
开发者ID:dsavransky,项目名称:EXOSIMS,代码行数:24,代码来源:keplerSTM_indprop.py

示例4: __call__

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import floor [as 别名]
def __call__(self, batch):
        images, labels = zip(*batch)

        imgH = self.imgH
        imgW = self.imgW
        if self.keep_ratio:
            ratios = []
            for image in images:
                w, h = image.size
                ratios.append(w / float(h))
            ratios.sort()
            max_ratio = ratios[-1]
            imgW = int(np.floor(max_ratio * imgH))
            imgW = max(imgH * self.min_ratio, imgW)  # assure imgH >= imgW

        transform = resizeNormalize((imgW, imgH))
        images = [transform(image) for image in images]
        images = torch.cat([t.unsqueeze(0) for t in images], 0)

        return images, labels 
开发者ID:zzzDavid,项目名称:ICDAR-2019-SROIE,代码行数:22,代码来源:dataset.py

示例5: randomise

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import floor [as 别名]
def randomise(self, value):
        """Randomise `value` with the mechanism.

        Parameters
        ----------
        value : int
            The value to be randomised.

        Returns
        -------
        int
            The randomised value.

        """
        self.check_inputs(value)

        # Need to account for overlap of 0-value between distributions of different sign
        unif_rv = random() - 0.5
        unif_rv *= 1 + np.exp(self._scale)
        sgn = -1 if unif_rv < 0 else 1

        # Use formula for geometric distribution, with ratio of exp(-epsilon/sensitivity)
        return int(np.round(value + sgn * np.floor(np.log(sgn * unif_rv) / self._scale))) 
开发者ID:IBM,项目名称:differential-privacy-library,代码行数:25,代码来源:geometric.py

示例6: randomise

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import floor [as 别名]
def randomise(self, value):
        self.check_inputs(value)

        if self._scale == 0:
            return value

        tau = 1 / (1 + np.floor(self._scale))
        sigma2 = self._scale ** 2

        while True:
            geom_x = 0
            while self._bernoulli_exp(tau):
                geom_x += 1

            bern_b = np.random.binomial(1, 0.5)
            if bern_b and not geom_x:
                continue

            lap_y = int((1 - 2 * bern_b) * geom_x)
            bern_c = self._bernoulli_exp((abs(lap_y) - tau * sigma2) ** 2 / 2 / sigma2)
            if bern_c:
                return value + lap_y 
开发者ID:IBM,项目名称:differential-privacy-library,代码行数:24,代码来源:gaussian.py

示例7: lanczos

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import floor [as 别名]
def lanczos(dx, a=3):
    """Lanczos kernel

    Parameters
    ----------
    dx: float
        amount to shift image
    a: int
        Lanczos window size parameter

    Returns
    -------
    result: array-like
        1D Lanczos kernel
    """
    if np.abs(dx) > 1:
        raise ValueError("The fractional shift dx must be between -1 and 1")
    window = np.arange(-a + 1, a + 1) + np.floor(dx)
    y = np.sinc(dx - window) * np.sinc((dx - window) / a)
    return y, window.astype(int) 
开发者ID:pmelchior,项目名称:scarlet,代码行数:22,代码来源:interpolation.py

示例8: warpImageFast

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import floor [as 别名]
def warpImageFast(im, XXdense, YYdense):
    minX = max(1., np.floor(XXdense.min()) - 1)
    minY = max(1., np.floor(YYdense.min()) - 1)

    maxX = min(im.shape[1], np.ceil(XXdense.max()) + 1)
    maxY = min(im.shape[0], np.ceil(YYdense.max()) + 1)

    im = im[int(round(minY-1)):int(round(maxY)),
            int(round(minX-1)):int(round(maxX))]

    assert XXdense.shape == YYdense.shape
    out_shape = XXdense.shape
    coordinates = [
        (YYdense - minY).reshape(-1),
        (XXdense - minX).reshape(-1),
    ]
    im_warp = np.stack([
        map_coordinates(im[..., c], coordinates, order=1).reshape(out_shape)
        for c in range(im.shape[-1])],
        axis=-1)

    return im_warp 
开发者ID:sunset1995,项目名称:HorizonNet,代码行数:24,代码来源:pano_lsd_align.py

示例9: paintParameterLine

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import floor [as 别名]
def paintParameterLine(parameterLine, width, height):
    lines = parameterLine.copy()
    panoEdgeC = np.zeros((height, width))

    num_sample = max(height, width)
    for i in range(len(lines)):
        n = lines[i, :3]
        sid = lines[i, 4] * 2 * np.pi
        eid = lines[i, 5] * 2 * np.pi
        if eid < sid:
            x = np.linspace(sid, eid + 2 * np.pi, num_sample)
            x = x % (2 * np.pi)
        else:
            x = np.linspace(sid, eid, num_sample)
        u = -np.pi + x.reshape(-1, 1)
        v = computeUVN(n, u, lines[i, 3])
        xyz = uv2xyzN(np.hstack([u, v]), lines[i, 3])
        uv = xyz2uvN(xyz, 1)
        m = np.minimum(np.floor((uv[:,0] + np.pi) / (2 * np.pi) * width) + 1,
            width).astype(np.int32)
        n = np.minimum(np.floor(((np.pi / 2) - uv[:, 1]) / np.pi * height) + 1,
            height).astype(np.int32)
        panoEdgeC[n-1, m-1] = i

    return panoEdgeC 
开发者ID:sunset1995,项目名称:HorizonNet,代码行数:27,代码来源:pano_lsd_align.py

示例10: np_sample

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import floor [as 别名]
def np_sample(img, coords):
    # a numpy implementation of ImageSample layer
    coords = np.maximum(coords, 0)
    coords = np.minimum(coords, np.array([img.shape[0] - 1, img.shape[1] - 1]))

    lcoor = np.floor(coords).astype('int32')
    ucoor = lcoor + 1
    ucoor = np.minimum(ucoor, np.array([img.shape[0] - 1, img.shape[1] - 1]))
    diff = coords - lcoor
    neg_diff = 1.0 - diff

    lcoory, lcoorx = np.split(lcoor, 2, axis=2)
    ucoory, ucoorx = np.split(ucoor, 2, axis=2)
    diff = np.repeat(diff, 3, 2).reshape((diff.shape[0], diff.shape[1], 2, 3))
    neg_diff = np.repeat(neg_diff, 3, 2).reshape((diff.shape[0], diff.shape[1], 2, 3))
    diffy, diffx = np.split(diff, 2, axis=2)
    ndiffy, ndiffx = np.split(neg_diff, 2, axis=2)

    ret = img[lcoory, lcoorx, :] * ndiffx * ndiffy + \
        img[ucoory, ucoorx, :] * diffx * diffy + \
        img[lcoory, ucoorx, :] * ndiffy * diffx + \
        img[ucoory, lcoorx, :] * diffy * ndiffx
    return ret[:, :, 0, :] 
开发者ID:tensorpack,项目名称:dataflow,代码行数:25,代码来源:deform.py

示例11: _ecg_simulate_derivsecgsyn

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import floor [as 别名]
def _ecg_simulate_derivsecgsyn(t, x, rr, ti, sfint, ai, bi):

    ta = math.atan2(x[1], x[0])
    r0 = 1
    a0 = 1.0 - np.sqrt(x[0] ** 2 + x[1] ** 2) / r0

    ip = np.floor(t * sfint).astype(int)
    w0 = 2 * np.pi / rr[min(ip, len(rr) - 1)]
    # w0 = 2*np.pi/rr[ip[ip <= np.max(rr)]]

    fresp = 0.25
    zbase = 0.005 * np.sin(2 * np.pi * fresp * t)

    dx1dt = a0 * x[0] - w0 * x[1]
    dx2dt = a0 * x[1] + w0 * x[0]

    # matlab rem and numpy rem are different
    # dti = np.remainder(ta - ti, 2*np.pi)
    dti = (ta - ti) - np.round((ta - ti) / 2 / np.pi) * 2 * np.pi
    dx3dt = -np.sum(ai * dti * np.exp(-0.5 * (dti / bi) ** 2)) - 1 * (x[2] - zbase)

    dxdt = np.array([dx1dt, dx2dt, dx3dt])
    return dxdt 
开发者ID:neuropsychology,项目名称:NeuroKit,代码行数:25,代码来源:ecg_simulate.py

示例12: scoreatpercentile

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import floor [as 别名]
def scoreatpercentile(a, per, limit=(), interpolation_method='lower'):
    """
    This function is grabbed from scipy

    """
    values = np.sort(a, axis=0)
    if limit:
        values = values[(limit[0] <= values) & (values <= limit[1])]

    idx = per /100. * (values.shape[0] - 1)
    if (idx % 1 == 0):
        score = values[int(idx)]
    else:
        if interpolation_method == 'fraction':
            score = _interpolate(values[int(idx)], values[int(idx) + 1],
                                 idx % 1)
        elif interpolation_method == 'lower':
            score = values[int(np.floor(idx))]
        elif interpolation_method == 'higher':
            score = values[int(np.ceil(idx))]
        else:
            raise ValueError("interpolation_method can only be 'fraction', " \
                             "'lower' or 'higher'")
    return score 
开发者ID:ME-ICA,项目名称:me-ica,代码行数:26,代码来源:tedana.py

示例13: forward

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import floor [as 别名]
def forward(self, features, rois):
        batch_size, num_channels, data_height, data_width = features.size()
        num_rois = rois.size()[0]
        outputs = Variable(torch.zeros(num_rois, num_channels, self.pooled_height, self.pooled_width)).cuda()

        for roi_ind, roi in enumerate(rois):
            batch_ind = int(roi[0].data[0])
            roi_start_w, roi_start_h, roi_end_w, roi_end_h = np.round(
                roi[1:].data.cpu().numpy() * self.spatial_scale).astype(int)
            roi_width = max(roi_end_w - roi_start_w + 1, 1)
            roi_height = max(roi_end_h - roi_start_h + 1, 1)
            bin_size_w = float(roi_width) / float(self.pooled_width)
            bin_size_h = float(roi_height) / float(self.pooled_height)

            for ph in range(self.pooled_height):
                hstart = int(np.floor(ph * bin_size_h))
                hend = int(np.ceil((ph + 1) * bin_size_h))
                hstart = min(data_height, max(0, hstart + roi_start_h))
                hend = min(data_height, max(0, hend + roi_start_h))
                for pw in range(self.pooled_width):
                    wstart = int(np.floor(pw * bin_size_w))
                    wend = int(np.ceil((pw + 1) * bin_size_w))
                    wstart = min(data_width, max(0, wstart + roi_start_w))
                    wend = min(data_width, max(0, wend + roi_start_w))

                    is_empty = (hend <= hstart) or(wend <= wstart)
                    if is_empty:
                        outputs[roi_ind, :, ph, pw] = 0
                    else:
                        data = features[batch_ind]
                        outputs[roi_ind, :, ph, pw] = torch.max(
                            torch.max(data[:, hstart:hend, wstart:wend], 1)[0], 2)[0].view(-1)

        return outputs 
开发者ID:Sunarker,项目名称:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代码行数:36,代码来源:roi_pool_py.py

示例14: create_from_images

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import floor [as 别名]
def create_from_images(tfrecord_dir, image_dir, label_dir, shuffle):
    print('Loading images from "%s"' % image_dir)
    image_filenames = sorted(glob.glob(os.path.join(image_dir, '*')))
    if len(image_filenames) == 0:
        error('No input images found')
        
    img = np.asarray(PIL.Image.open(image_filenames[0]))
    resolution = img.shape[0]
    channels = img.shape[2] if img.ndim == 3 else 1
    if img.shape[1] != resolution:
        error('Input images must have the same width and height')
    if resolution != 2 ** int(np.floor(np.log2(resolution))):
        error('Input image resolution must be a power-of-two')
    if channels not in [1, 3]:
        error('Input images must be stored as RGB or grayscale')

    try:
        with open(label_dir, 'rb') as file:
            labels = pickle.load(file)
    except:
        error('Label file was not found')
    
    with TFRecordExporter(tfrecord_dir, len(image_filenames)) as tfr:
        order = tfr.choose_shuffled_order() if shuffle else np.arange(len(image_filenames))
        reordered_names = []
        for idx in range(order.size):
            image_filename = image_filenames[order[idx]]
            img = np.asarray(PIL.Image.open(image_filename))
            if channels == 1:
                img = img[np.newaxis, :, :] # HW => CHW
            else:
                img = img.transpose(2, 0, 1) # HWC => CHW
            tfr.add_image(img)
            reordered_names.append(os.path.basename(image_filename))
        reordered_labels = []
        for key in reordered_names:
            reordered_labels += [labels[key]]
        reordered_labels = np.stack(reordered_labels, 0)
        tfr.add_labels(reordered_labels)

#---------------------------------------------------------------------------- 
开发者ID:zalandoresearch,项目名称:disentangling_conditional_gans,代码行数:43,代码来源:dataset_tool.py

示例15: process_reals

# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import floor [as 别名]
def process_reals(x, lod, mirror_augment, drange_data, drange_net):
    with tf.name_scope('ProcessReals'):
        with tf.name_scope('DynamicRange'):
            x = tf.cast(x, tf.float32)
            x = misc.adjust_dynamic_range(x, drange_data, drange_net)
        if mirror_augment:
            with tf.name_scope('MirrorAugment'):
                s = tf.shape(x)
                mask = tf.random_uniform([s[0], 1, 1, 1], 0.0, 1.0)
                mask = tf.tile(mask, [1, s[1], s[2], s[3]])
                x = tf.where(mask < 0.5, x, tf.reverse(x, axis=[3]))
        with tf.name_scope('FadeLOD'): # Smooth crossfade between consecutive levels-of-detail.
            s = tf.shape(x)
            y = tf.reshape(x, [-1, s[1], s[2]//2, 2, s[3]//2, 2])
            y = tf.reduce_mean(y, axis=[3, 5], keep_dims=True)
            y = tf.tile(y, [1, 1, 1, 2, 1, 2])
            y = tf.reshape(y, [-1, s[1], s[2], s[3]])
            x = tfutil.lerp(x, y, lod - tf.floor(lod))
        with tf.name_scope('UpscaleLOD'): # Upscale to match the expected input/output size of the networks.
            s = tf.shape(x)
            factor = tf.cast(2 ** tf.floor(lod), tf.int32)
            x = tf.reshape(x, [-1, s[1], s[2], 1, s[3], 1])
            x = tf.tile(x, [1, 1, 1, factor, 1, factor])
            x = tf.reshape(x, [-1, s[1], s[2] * factor, s[3] * factor])
        return x

#----------------------------------------------------------------------------
# Just-in-time processing of masks before feeding them to the networks. 
开发者ID:zalandoresearch,项目名称:disentangling_conditional_gans,代码行数:30,代码来源:train.py


注:本文中的numpy.floor方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。