本文整理汇总了Python中numpy.float16方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.float16方法的具体用法?Python numpy.float16怎么用?Python numpy.float16使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类numpy
的用法示例。
在下文中一共展示了numpy.float16方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_ndarray_elementwise
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import float16 [as 别名]
def test_ndarray_elementwise():
np.random.seed(0)
nrepeat = 10
maxdim = 4
all_type = [np.float32, np.float64, np.float16, np.uint8, np.int32]
real_type = [np.float32, np.float64, np.float16]
for repeat in range(nrepeat):
for dim in range(1, maxdim):
check_with_uniform(lambda x, y: x + y, 2, dim, type_list=all_type)
check_with_uniform(lambda x, y: x - y, 2, dim, type_list=all_type)
check_with_uniform(lambda x, y: x * y, 2, dim, type_list=all_type)
check_with_uniform(lambda x, y: x / y, 2, dim, type_list=real_type)
check_with_uniform(lambda x, y: x / y, 2, dim, rmin=1, type_list=all_type)
check_with_uniform(mx.nd.sqrt, 1, dim, np.sqrt, rmin=0)
check_with_uniform(mx.nd.square, 1, dim, np.square, rmin=0)
check_with_uniform(lambda x: mx.nd.norm(x).asscalar(), 1, dim, np.linalg.norm)
示例2: create_state
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import float16 [as 别名]
def create_state(self, index, weight):
momentum = None
weight_master_copy = None
if self.multi_precision and weight.dtype == numpy.float16:
weight_master_copy = array(weight, ctx=weight.context, dtype=numpy.float32)
if self.momentum != 0.0:
momentum = zeros(weight.shape, weight.context, dtype=numpy.float32,
stype=weight.stype)
return (momentum, weight_master_copy)
if weight.dtype == numpy.float16 and not self.multi_precision:
warnings.warn("Accumulating with float16 in optimizer can lead to "
"poor accuracy or slow convergence. "
"Consider using multi_precision=True option of the "
"SGD optimizer")
if self.momentum != 0.0:
momentum = zeros(weight.shape, weight.context, dtype=weight.dtype, stype=weight.stype)
return momentum
示例3: create_state
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import float16 [as 别名]
def create_state(self, index, weight):
"""Create additional optimizer state: momentum
Parameters
----------
weight : NDArray
The weight data
"""
momentum = None
weight_master_copy = None
do_multi_precision = self.multi_precision and weight.dtype == np.float16
if do_multi_precision:
if self.momentum != 0.0:
momentum = mx.nd.zeros(weight.shape, weight.context, dtype=np.float32)
weight_master_copy = array(weight, ctx=weight.context, dtype=np.float32)
return (momentum, weight_master_copy)
else:
if self.momentum != 0.0:
momentum = mx.nd.zeros(weight.shape, weight.context, dtype=weight.dtype)
return momentum
示例4: test_pooling_with_type2
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import float16 [as 别名]
def test_pooling_with_type2():
ctx_list = [{'ctx': mx.gpu(0), 'pool_data': (10, 2, 10, 10), 'type_dict': {'pool_data': np.float64}},
{'ctx': mx.gpu(0), 'pool_data': (10, 2, 10, 10), 'type_dict': {'pool_data': np.float32}},
{'ctx': mx.gpu(0), 'pool_data': (10, 2, 10, 10), 'type_dict': {'pool_data': np.float16}},
{'ctx': mx.cpu(0), 'pool_data': (10, 2, 10, 10), 'type_dict': {'pool_data': np.float64}},
{'ctx': mx.cpu(0), 'pool_data': (10, 2, 10, 10), 'type_dict': {'pool_data': np.float32}}]
sym = mx.sym.Pooling(name='pool', kernel=(3,3), stride=(2,2), pool_type='max')
check_consistency(sym, ctx_list, rand_type=np.float16)
sym = mx.sym.Pooling(name='pool', kernel=(3,3), pad=(1,1), pool_type='avg')
check_consistency(sym, ctx_list)
sym = mx.sym.Pooling(name='pool', kernel=(5,5), pad=(2,2), pool_type='max')
check_consistency(sym, ctx_list, rand_type=np.float16)
sym = mx.sym.Pooling(name='pool', kernel=(3,3), pad=(1,1), pool_type='sum')
check_consistency(sym, ctx_list)
示例5: test_elementwisesum_with_type
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import float16 [as 别名]
def test_elementwisesum_with_type():
dev_types = [[mx.gpu(0), [np.float64, np.float32, np.float16]],
[mx.cpu(0), [np.float64, np.float32]] ]
for num_args in range(1, 6):
ews_arg_shape = {}
for i in range(num_args):
ews_arg_shape['ews_arg'+str(i)] = (2, 10)
sym = mx.sym.ElementWiseSum(name='ews', num_args=num_args)
ctx_list = []
for dev, types in dev_types:
for dtype in types:
ews_arg_dtype = {'type_dict':{}}
for i in range(num_args):
ews_arg_dtype['type_dict']['ews_arg'+str(i)] = dtype
ctx_elem = {'ctx': dev}
ctx_elem.update(ews_arg_shape)
ctx_elem.update(ews_arg_dtype)
ctx_list.append(ctx_elem)
check_consistency(sym, ctx_list)
示例6: test_embedding_with_type
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import float16 [as 别名]
def test_embedding_with_type():
def test_embedding_helper(data_types, weight_types, low_pad, high_pad):
NVD = [[20, 10, 20], [200, 10, 300]]
for N, V, D in NVD:
sym = mx.sym.Embedding(name='embedding', input_dim=V, output_dim=D)
ctx_list = []
for data_type in data_types:
for weight_type in weight_types:
ctx_list.append({'ctx': mx.gpu(0), 'embedding_data': (N,),
'type_dict': {'embedding_data': data_type, 'embedding_weight': weight_type}})
ctx_list.append({'ctx': mx.cpu(0), 'embedding_data': (N,),
'type_dict': {'embedding_data': data_type, 'embedding_weight': weight_type}})
arg_params = {'embedding_data': np.random.randint(low=-low_pad, high=V+high_pad, size=(N,))}
check_consistency(sym, ctx_list, grad_req={'embedding_data': 'null','embedding_weight': 'write'},
arg_params=arg_params)
data_types = [np.float16, np.float32, np.float64, np.int32]
weight_types = [np.float16, np.float32, np.float64]
test_embedding_helper(data_types, weight_types, 5, 5)
data_types = [np.uint8]
weight_types = [np.float16, np.float32, np.float64]
test_embedding_helper(data_types, weight_types, 0, 5)
示例7: test_psroipooling_with_type
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import float16 [as 别名]
def test_psroipooling_with_type():
arg_params = {
'psroipool_rois': np.array([[0, 10, 22, 161, 173], [0, 20, 15, 154, 160]])}
# plain psroipooling
sym = mx.sym.contrib.PSROIPooling(spatial_scale=0.0625, output_dim=2, pooled_size=3, name='psroipool')
ctx_list = [{'ctx': mx.gpu(0),
'psroipool_data': (1, 18, 14, 14),
'psroipool_rois': (2, 5),
'type_dict': {'psroipool_data': np.float64, 'psroipool_rois': np.float64}},
{'ctx': mx.gpu(0),
'psroipool_data': (1, 18, 14, 14),
'psroipool_rois': (2, 5),
'type_dict': {'psroipool_data': np.float32, 'psroipool_rois': np.float32}},
{'ctx': mx.gpu(0),
'psroipool_data': (1, 18, 14, 14),
'psroipool_rois': (2, 5),
'type_dict': {'psroipool_data': np.float16, 'psroipool_rois': np.float16}},
]
check_consistency(sym, ctx_list, grad_req={'psroipool_data': 'write',
'psroipool_rois': 'null'}, arg_params=arg_params)
示例8: __next__
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import float16 [as 别名]
def __next__(self):
self.count += 1
img0 = self.imgs.copy()
if cv2.waitKey(1) == ord('q'): # q to quit
cv2.destroyAllWindows()
raise StopIteration
# Letterbox
img = [letterbox(x, new_shape=self.img_size, interp=cv2.INTER_LINEAR)[0] for x in img0]
# Stack
img = np.stack(img, 0)
# Normalize RGB
img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB
img = np.ascontiguousarray(img, dtype=np.float16 if self.half else np.float32) # uint8 to fp16/fp32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
return self.sources, img, img0, None
示例9: add_experience
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import float16 [as 别名]
def add_experience(self, state, action, reward, next_state, done):
'''Implementation for update() to add experience to memory, expanding the memory size if necessary'''
# Move head pointer. Wrap around if necessary
self.head = (self.head + 1) % self.max_size
self.states[self.head] = state.astype(np.float16)
self.actions[self.head] = action
self.rewards[self.head] = reward
self.next_states[self.head] = next_state
# self.ns_buffer.append(next_state.astype(np.float16))
self.dones[self.head] = done
# Actually occupied size of memory
if self.size < self.max_size:
self.size += 1
self.seen_size += 1
# set to_train using memory counters head, seen_size instead of tick since clock will step by num_envs when on venv; to_train will be set to 0 after training step
algorithm = self.body.agent.algorithm
algorithm.to_train = algorithm.to_train or (self.seen_size > algorithm.training_start_step and self.head % algorithm.training_frequency == 0)
示例10: setup
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import float16 [as 别名]
def setup(self):
# An array of all possible float16 values
self.all_f16 = np.arange(0x10000, dtype=uint16)
self.all_f16.dtype = float16
self.all_f32 = np.array(self.all_f16, dtype=float32)
self.all_f64 = np.array(self.all_f16, dtype=float64)
# An array of all non-NaN float16 values, in sorted order
self.nonan_f16 = np.concatenate(
(np.arange(0xfc00, 0x7fff, -1, dtype=uint16),
np.arange(0x0000, 0x7c01, 1, dtype=uint16)))
self.nonan_f16.dtype = float16
self.nonan_f32 = np.array(self.nonan_f16, dtype=float32)
self.nonan_f64 = np.array(self.nonan_f16, dtype=float64)
# An array of all finite float16 values, in sorted order
self.finite_f16 = self.nonan_f16[1:-1]
self.finite_f32 = self.nonan_f32[1:-1]
self.finite_f64 = self.nonan_f64[1:-1]
示例11: test_half_conversion_denormal_round_even
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import float16 [as 别名]
def test_half_conversion_denormal_round_even(self, float_t, uint_t, bits):
# Test specifically that all bits are considered when deciding
# whether round to even should occur (i.e. no bits are lost at the
# end. Compare also gh-12721. The most bits can get lost for the
# smallest denormal:
smallest_value = np.uint16(1).view(np.float16).astype(float_t)
assert smallest_value == 2**-24
# Will be rounded to zero based on round to even rule:
rounded_to_zero = smallest_value / float_t(2)
assert rounded_to_zero.astype(np.float16) == 0
# The significand will be all 0 for the float_t, test that we do not
# lose the lower ones of these:
for i in range(bits):
# slightly increasing the value should make it round up:
larger_pattern = rounded_to_zero.view(uint_t) | uint_t(1 << i)
larger_value = larger_pattern.view(float_t)
assert larger_value.astype(np.float16) == smallest_value
示例12: test_half_values
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import float16 [as 别名]
def test_half_values(self):
"""Confirms a small number of known half values"""
a = np.array([1.0, -1.0,
2.0, -2.0,
0.0999755859375, 0.333251953125, # 1/10, 1/3
65504, -65504, # Maximum magnitude
2.0**(-14), -2.0**(-14), # Minimum normal
2.0**(-24), -2.0**(-24), # Minimum subnormal
0, -1/1e1000, # Signed zeros
np.inf, -np.inf])
b = np.array([0x3c00, 0xbc00,
0x4000, 0xc000,
0x2e66, 0x3555,
0x7bff, 0xfbff,
0x0400, 0x8400,
0x0001, 0x8001,
0x0000, 0x8000,
0x7c00, 0xfc00], dtype=uint16)
b.dtype = float16
assert_equal(a, b)
示例13: _convert
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import float16 [as 别名]
def _convert(self, vals):
res = {}
for k, v in vals.items():
if isinstance(v, (np.int, np.int8, np.int16, np.int32, np.int64)):
v = int(v)
elif isinstance(v, (np.float, np.float16, np.float32, np.float64)):
v = float(v)
elif isinstance(v, Labels):
v = list(v)
elif isinstance(v, np.ndarray):
v = v.tolist()
elif isinstance(v, dict):
v = self._convert(v)
res[k] = v
return res
示例14: _toscalar
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import float16 [as 别名]
def _toscalar(v):
if isinstance(v, (np.float16, np.float32, np.float64,
np.uint8, np.uint16, np.uint32, np.uint64,
np.int8, np.int16, np.int32, np.int64)):
return np.asscalar(v)
else:
return v
示例15: get_symbol
# 需要导入模块: import numpy [as 别名]
# 或者: from numpy import float16 [as 别名]
def get_symbol(num_classes, num_layers=11, batch_norm=False, dtype='float32', **kwargs):
"""
Parameters
----------
num_classes : int, default 1000
Number of classification classes.
num_layers : int
Number of layers for the variant of densenet. Options are 11, 13, 16, 19.
batch_norm : bool, default False
Use batch normalization.
dtype: str, float32 or float16
Data precision.
"""
vgg_spec = {11: ([1, 1, 2, 2, 2], [64, 128, 256, 512, 512]),
13: ([2, 2, 2, 2, 2], [64, 128, 256, 512, 512]),
16: ([2, 2, 3, 3, 3], [64, 128, 256, 512, 512]),
19: ([2, 2, 4, 4, 4], [64, 128, 256, 512, 512])}
if num_layers not in vgg_spec:
raise ValueError("Invalide num_layers {}. Possible choices are 11,13,16,19.".format(num_layers))
layers, filters = vgg_spec[num_layers]
data = mx.sym.Variable(name="data")
if dtype == 'float16':
data = mx.sym.Cast(data=data, dtype=np.float16)
feature = get_feature(data, layers, filters, batch_norm)
classifier = get_classifier(feature, num_classes)
if dtype == 'float16':
classifier = mx.sym.Cast(data=classifier, dtype=np.float32)
symbol = mx.sym.SoftmaxOutput(data=classifier, name='softmax')
return symbol